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Abstract. Assignment flows are smooth dynamical systems for data la-
beling on graphs. Although they exhibit structural similarities with the
well-studied class of replicator dynamics, it is nontrivial to apply exist-
ing tools to their analysis. We propose an embedding of the underlying
assignment manifold into the interior of a single probability simplex. Un-
der this embedding, a large class of assignment flows are pushed to much
higher-dimensional replicator dynamics. We demonstrate the applicabil-
ity of this result by transferring a spectral decomposition of replicator
dynamics to assignment flows.
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1 Introduction

Given a graph G with nodes I and a weighted adjacency matrix Ω, data label-
ing is the task of assigning a label from a discrete set J to each node in I such
that both consistency with given data on I and spatial regularity with respect
to Ω are simultaneously maximized. This constitutes a basic problem in image
processing and formalizes e.g. image segmentation. In [1], a class of smooth ge-
ometric labeling systems is introduced which evolves high-entropy assignment
states towards hard node–label decisions. Assignment flows are applicable to
data in any metric space and regularize via geometric averaging according to Ω.
If nodes are decoupled (i.e. Ω = I), assignment flows reduce to simple node-wise
replicator equations which have been extensively studied as models of evolution
in mathematical biology [6,10,9]. However, established theory is difficult to ap-
ply to the study of assignment flows, because it is unclear how to incorporate
the coupling of nodes via geometric averaging which is at the core of their ex-
pressiveness. In the present work, we show how a large class of assignment flows
can be seen as marginalization of replicator dynamics. We subsequently leverage
this perspective to transfer a spectral decomposition result from the replicator
setting to assignment flows.
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Fig. 1. Spectral approximations to the (S)-assignment flow limit (right) by approxi-
mating (4.23) with k ∈ {500, 1000, 1500} most dominant eigenvectors of Ω. Averaging
weights are computed analogous to nonlocal means denoising [3].

1.1 Related Work

A nonlinear spectral framework has recently been developed for the treatment
of regularizations induced by one-homogeneous functions [7,5] such as total vari-
ation (TV). Applicability of this framework was demonstrated for diverse data
processing tasks such as image fusion [2]. However, because the underlying spec-
tral theory is nonlinear, specialized methods are required to compute eigenfunc-
tions [4]. The spectral decomposition we propose here can be seen as a tool to
study nonlinear assignment flows which have been used in similar areas of appli-
cation. However, unlike the above framework, the spectral analysis we propose
is linear, making it amenable to standard methods.

2 Assignment Manifold and Assignment Flows

We briefly summarize assignment flows as introduced in [1] and refer to the re-
cent survey [12] for more background, more details and a review of recent related
work.

Let (F , dF ) be a metric space and Fn = {fi ∈ F : i ∈ I}, |I| = n be given data.
Assume that a predefined set of |J | = c prototypes F∗ = {f∗j ∈ F : j ∈ J }
is given. Data labeling denotes the task of finding assignments j → i, f∗j → fi
in a spatially regularized fashion. At each node i ∈ I, a distribution Wi =
(Wi1, . . . ,Wic)

> in the relative interior S = rint∆c of the probability simplex
encodes assignment of J to i. We view S as a Riemannian manifold (S, g) en-
dowed with the Fisher-Rao metric g from information geometry. The assignment
manifold (W, g),W = S×· · ·×S (n = |I| factors) is the product manifold whose
points encode label assignments at all nodes. By comparing given data to pro-

totypes, the distance vector field DF ;i =
(
dF (fi, f

∗
1 ), . . . , dF (fi, f

∗
c )
)>
, i ∈ I is

a data representation which abstracts the specific feature space F . It is lifted
to the assignment manifold by the likelihood map and the likelihood vectors,
respectively,

Li : S → S, Li(Wi) =
Wi � e−

1
ρDF;i

〈Wi, e
− 1
ρDF;i〉

, i ∈ I. (2.1)
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This map is based on the affine e-connection of information geometry and ρ > 0
is used to normalize the application-specific scale of distances DF ;i. Likelihood
vectors are spatially regularized by the similarity map and similarity vectors,
respectively,

Si : W → S, Si(W ) = ExpWi

( ∑
k∈Ni

wik Exp−1Wi

(
Lk(Wk)

))
, i ∈ I, (2.2)

where Expp(v) = pev/p

〈p,ev/p〉 is the exponential map corresponding to the e-connection.

Positive weights ωik, k ∈ Ni, that sum up to 1 in every neighborhood Ni, deter-
mine the regularization properties. We collect these weights into an adjacency
matrix Ω ∈ Rn×n. The (W -)assignment flow is induced on the assignment man-
ifold W by the locally coupled system of nonlinear ODEs

Ẇi = RWi
Si(W ), Wi(0) = 1S , i ∈ I, (2.3)

where the map Rp = Diag(p) − pp>, p ∈ S turns the right-hand side into a
tangent vector field and 1W ∈ W denotes the barycenter of the assignment
manifold W. The solution W (t) ∈ W is numerically computed by geometric
integration [13] and determines a labeling W (T ) for sufficiently large T after
a trivial rounding operation. Convergence and stability of the assignment flow
have been studied by [14]. For symmetric weights ωij = ωji, it has been shown
[11] that (2.3) can be parameterized entirely by similarity vectors

Ẇ (t) = RW (t)[S(t)], W (0) = 1W (2.4)

Ṡ(t) = RS(t)[ΩS(t)], S(0) = exp1W (−ΩD) . (2.5)

We call the dynamics (2.5) S-assignment flow or S-flow. Here, the lifting map
expW : T0W →W is defined by

expWi
(Vi)i = ExpWi

(RWiVi) =
Wi � exp(Vi)

〈Wi, exp(Vi)〉
, i ∈ I (2.6)

on the flat tangent space T0W = {V ∈ Rn×c : V 1c = 0} and R applies to each
row of W resp. S separately. Note that expp(v + α1) = expp(v) for any α ∈ R
as one easily checks.

Notation In the following, we consider a graph G with n nodes and encode
assignment of c classes to these nodes as assignment matrices S ∈ W ⊆ Rn×c.
For tensors U ∈ Rn1×···×nr , Uv = vecU ∈ Rn1···nr denotes vectorization. The
action of linear operators T on U is written as T (U) if U is regarded as a tensor
and by juxtaposition if U is vectorized, i.e. T (U)v = TUv. We define the symbol
∆ to refer to the relative interior of a single probability simplex with N = cn

corners. Vectors P ∈ ∆ are identified with tensors in Rc×···×c such that their
entries can be referred to by multi-indices α ∈ [c]n. The symbol 1n×c denotes the
matrix of size n× c filled with 1 and � denotes componentwise multiplication.
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3 S-Flow Embedding

Assignment matrices S ∈ W associate each node i ∈ [n] with a distribution
Si ∈ S. Up to a negligible set of pathological cases, assignment flows converge
to integral assignments, i.e. Si(t) → ek(i) ∈ Rc for t → ∞ as shown in [14].
By enumerating all cn possible assignments of c classes to n nodes, we may
equivalently view the integral limit point as approached within ∆. In keeping
with this perspective, the aim of this section is to find an embedding of W into
∆ such that S-flows in W translate to replicator dynamics in ∆. To this end,
define the maps

T : W → ∆, T (S)α :=
∏
i∈[n]

Si,αi (3.1)

Q : W → ∆, Q(S)γ :=
∑
l∈[n]

Sl,γl . (3.2)

T maps S ∈ W to a rank-1 tensor in ∆. The inverse process is marginalization
for each node.

Lemma 1. The map T defined by (3.1) is a diffeomorphism between W and a
subset of ∆ with inverse

T−1(P )i,j =
∑
αi=j

Pα :=
∑
α∈[c]n

δαi=jPα, (i, j) ∈ [n]× [c] . (3.3)

Proof. We check that the inverse of T has the form (3.3).

T−1(T (S))i,j =
∑
αi=j

∏
r∈[n]

Sr,αr (3.4a)

=
∑
k1∈[c]

. . .
∑

ki−1∈[c]

∑
ki+1∈[c]

. . .
∑
kn∈[c]

S1,k1 . . . Si−1,ki−1
Si,jSi+1,ki+1

. . . Sn,kn

(3.4b)

= Si,j
∏

l∈[n]\{i}

〈Sl,1〉 = Si,j . (3.4c)

Clearly, both T and T−1 are smooth. ut

If individual nodes are decoupled, i.e. Ω = In, assignment flows reduce to
simple replicator dynamics for each node. We will show that the case of coupled
nodes via more general choices of Ω may likewise be seen as a single, much larger
replicator equation. We start with a preparatory lemma.

Lemma 2 (Adjoint of Q). T−1 and Q are adjoint linear operators.
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Proof. Let P ∈ RN and V ∈ Rn×c, then

〈P,Q(V )〉 =
∑
γ

PγQ(V )γ =
∑
γ

Pγ
∑
l∈[n]

Vl,γl =
∑
l∈[n]

∑
j∈[c]

∑
γl=j

PγVl,γl (3.5a)

=
∑
l∈[n]

∑
j∈[c]

Vl,j
∑
γl=j

Pγ
(3.3)
=

∑
l∈[n]

∑
j∈[c]

Vl,jT
−1(P )l,j (3.5b)

= 〈T−1(P ), V 〉 . (3.5c)

ut
Theorem 1 (Replicator dynamics induce S-Flow). For any S-flow

Ṡ(t) = RS(t)[ΩS(t)] =: X(S(t)), S(0) = S0 (3.6)

on W exists a matrix Ω ∈ RN×N such that (3.6) is induced by marginalization
of the replicator dynamics

Ṗ (t) = (T]X)(P ) = RP (t)[ΩP (t)], P (0) = T (S0) (3.7)

on ∆. Ω is symmetric exactly if Ω is symmetric.

Proof. We push forward the S-flow vector field X(S) := RS [ΩS] via T. The
components of the differential dT read

∂Tα
∂Sl,m

=
∂

∂Sl,m

∏
i∈[n]

Si,αi =
∏

i∈[n]\{l}

Si,αi
∂

∂Sl,m
Sl,αl = δαl=m

∏
i∈[n]\{l}

Si,αi .

(3.8)
By setting P = T (S), we may rewrite this as

∂Tα
∂Sl,m

= δαl=m
∏

i∈[n]\{l}

Si,αi . (3.9)

In the following, every occurrence of S is meant as S(P ) = T−1(P ) (Lemma 1).
The S-flow field X given by (3.6) has components

X(T−1(P ))l,m = Sl,m

( ∑
j∈[n]

ωljSj,m − 〈Sl, (ΩS)l〉
)

(3.10)

and the pushforward via T consequently reads

(T]X)(P )γ =
∑
l∈[n]

∑
m∈[c]

∂Tγ
∂Sl,m

X(T−1(P ))l,m (3.11a)

=
∑
l∈[n]

( ∏
i∈[n]\{l}

Si,γi

)
Sl,γl

[ ∑
j∈[n]

ωljSj,γl − 〈Sl, (ΩS)l〉
]

(3.11b)

=
( ∏
i∈[n]

Si,γi

) ∑
l∈[n]

[
(ΩS)l,γl − 〈Sl, (ΩS)l〉

]
(3.11c)

= Pγ

( ∑
l∈[n]

(ΩS)l,γl − 〈S, (ΩS)〉
)
. (3.11d)
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We define the linear operator Ω = Q(Ω ⊗ Ic)Q> on ∆ with Q defined by (3.2).
Clearly, Ω is symmetric exactly if Ω is symmetric. Lemma 2 now implies

〈P,ΩP 〉 = 〈TSv, Q(Ω ⊗ Ic)Q
>TSv〉 = 〈Sv, (Ω ⊗ Ic)S

v〉 = 〈S,ΩS〉 (3.12)

because S ∈ W, as well as∑
l∈[n]

(ΩS)l,γl = Q(ΩS)γ =
(
Q(Ω ⊗ I)Q>TSv)

)
γ

= (ΩP )γ . (3.13)

Returning to (3.11), this gives

(T]X)(P )γ = Pγ
(
(ΩP )γ − 〈P,ΩP 〉

)
(3.14)

which may be written more compactly as (T]X)(P ) = RP [ΩP ]. Because the
inverse map T−1 performs marginalization for each node, this shows the asser-
tion. ut

4 S-Flow Spectral Decomposition

Theorem 1 allows to view assignment flows as marginal dynamics of replicator
systems. We aim to leverage this insight to transfer results from the study of
replicator equations to the assignment flow setting. To this end, we first briefly
describe a spectral decomposition result for replicator dynamics in Section 4.1
and subsequently apply it to the S-flow (2.5) in Section 4.2.

4.1 Selection Systems

Given a simplex ∆ ⊂ RN and a symmetric matrix Ω ∈ RN×N

Ṗ (t) = RP (t)[ΩP (t)], P (0) = P0 (4.1)

is called replicator equation [6] for linear “fitness” Ω and initial value P0. Dy-
namics of this type have been studied in mathematical biology by [8]. Let

Ω =
∑rankΩ
k=1 λkhkh

>
k denote the spectral decomposition of Ω. In mathemat-

ical models of evolution, P describes the relative frequencies of N traits in a
given population. Let l(t) ∈ RN model the absolute number of individuals ex-

hibiting each trait such that P (t) = l(t)
〈l(t),1N 〉 , l(0) = l0. The selection system

equivalent to (4.1) reads

l(t) = l0 �K(t), K(t) = exp
(∑

k

sk(t)hk

)
(4.2)

with coefficients sk(t) following the so-called escort system dynamics [8]

ṡi(t) = λi

〈
P0, hi � exp

(∑
k sk(t)hk

)〉
〈P0, exp

(∑
k sk(t)hk

)
〉 . (4.3)
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Proposition 1. The replicator dynamics (4.1) is equivalent to

P (t) = expP0

(∑
k

sk(t)hk

)
(4.4)

ṡk(t) = λk〈hk, P (t)〉, sk(0) = 0, k ∈ [rankΩ] (4.5)

Proof. The quantity l can be normalized to yield a corresponding assignment
P ∈ ∆. Let l0 = l(0) be such that 〈l0,1〉 = 1. Then P0 = l0 and we find

P (t) =
P0 � exp

(∑
k sk(t)hk

)〈
1, P0 � exp

(∑
k sk(t)hk

)〉 (2.6)
= expP0

(∑
k

sk(t)hk

)
. (4.6)

Escort system dynamics can be transformed to

ṡi(t) = λi
〈hi, P0 � exp

(∑
k sk(t)hk

)
〉

〈P0, exp
(∑

k sk(t)hk
)
〉 (4.7a)

= λi

〈
hi, expP0

(∑
k

sk(t)hk
)〉

(4.7b)

= λi〈hi, P (t)〉 (4.7c)

and the initial conditions (4.5) are consistent with (4.1). ut

4.2 Spectral Decomposition

We aim to transfer the spectral decomposition of Proposition 1 to S-flows. To
this end, the following lemmata describe further behavior of the maps T and Q
introduced in (3.1) and (3.2).

Lemma 3. For any matrix V ∈ Rn×c it holds that 〈Q(V ),1N 〉 = cn−1〈V,1n×c〉.

Proof. We directly compute∑
γ

∑
l∈[n]

Vl,γl =
∑
l∈[n]

∑
m∈[c]

∑
γl=m

Vl,γl =
∑
l∈[n]

∑
m∈[c]

cn−1Vl,m (4.8a)

= cn−1〈V,1n×c〉 . (4.8b)

ut

Lemma 4. For any V ∈ T0W it holds that T−1(Q(V )) = cn−1V .

Proof. For arbitrary indices (i, j) ∈ [n]× [c], we find

T−1(Q(V ))i,j
(3.2),(3.3)

=
∑
γi=j

∑
l∈[n]

Vl,γl =
∑
γi=j

(
Vi,γi +

∑
l∈[n]\{i}

Vl,γl

)
(4.9a)

= cn−1Vi,j +
∑
γi=j

∑
l∈[n]\{i}

Vl,γl . (4.9b)
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Let Ṽ contain only the rows with indices [n] \ {i} of V and let γ̃ denote multi-
indices of its rows. Then the last sum in (4.9b) is proportional to∑

l∈[n]\{i}

∑
γ̃

Ṽl,γ̃l =
∑

l∈[n]\{i}

∑
m∈[c]

∑
γ̃l=m

Ṽl,γ̃l ∝
∑

l∈[n]\{i}

∑
m∈[c]

Ṽl,m = 0 (4.10)

ut
Lemma 5. If V ∈ T0W and λ ∈ R satisfy ΩV = λV then V = QV v is an
eigenvector of Ω = Q(Ω ⊗ Ic)Q> for eigenvalue cn−1λ. Additionally, 1N is an
eigenvalue of Ω and QUv ∝ 1N if U ∝ 1n×c.

Proof. Let V ∈ T0W and λ ∈ R satisfy ΩV = λV . Then by Lemma 4 it holds
that

ΩQV v = Q(Ω ⊗ In)Q>QV v = cn−1Q(Ω ⊗ In)V v = cn−1λQV v . (4.11)

Now let U ∝ 1n×c. Then QUv ∝ 1N by Lemma 3 and we find

Ω1N = Q(Ω ⊗ In)Q>1N ∝ Q(Ω ⊗ In)1nc = Q1nc ∝ 1N (4.12)

by using Lemma 2. ut
Lemma 6. It holds kerQ = {Diag(d)1n×c : d ∈ Rn, 〈d, 1n〉 = 0} as well as
rankQ = nc− (n− 1).

Proof. Let V ∈ kerQ and let γ, γ̃ be two fixed multi-indices which differ exactly
at position i but are otherwise arbitrary. We have (QV )γ = (QV )γ̃ = 0 by
assumption. Thus

(QV )γ̃ = Vi,γ̃i +
∑

l∈[n]\{i}

Vl,γ̃l = Vi,γ̃i +
∑

l∈[n]\{i}

Vl,γl (4.13a)

= (QV )γ = Vi,γi +
∑

l∈[n]\{i}

Vl,γl (4.13b)

which implies Vi,γ̃i = Vi,γi , i.e. V = Diag(d)1n×c for some d ∈ Rn since i was
arbitrary. Let V have this form. Then

(QV )γ =
∑
l∈[n]

Vl,γl =
∑
l∈[n]

dl = 〈d,1n〉 . (4.14)

so V is in the kernel of Q exactly if 〈d,1n〉 = 0. There are (n − 1) linearly
independent vectors d ∈ Rn with this property, therefore Q has the specified
rank. ut
Proposition 2 (Eigenvectors of Ω). Let Ω ∈ Rn×n be a symmetric matrix
of full rank such that Ω1n = 1n. Then Ω has rank nc− (n− 1) and there is an
orthogonal matrix V ∈ Rnc×n(c−1) such that the columns of V are eigenvectors
of Ω⊗Ic and the columns of V =

√
c
NQV are pairwise orthonormal eigenvectors

of Ω. The columns of V together with the vector 1√
N

1N form an orthonormal

basis of imgΩ.
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Proof. Let G ∈ Rn×n be an orthogonal matrix of eigenvectors of Ω and let
Λ = Diag(λ1, . . . , λn) have the respective eigenvalues as diagonal entries. Then
Ω = GΛG>. Now let H ∈ Rc×c be an orthogonal matrix with first column
h1 = 1√

c
1c such that the remaining columns span {d ∈ Rc : 〈d,1c〉 = 0}. We find

(G⊗H)(Λ⊗ Ic)(G⊗H)> = (G⊗H)(Λ⊗ Ic)(G
> ⊗H>) (4.15a)

= (G⊗H)((ΛG>)⊗H>) (4.15b)

= (GΛG>)⊗ (HH>) (4.15c)

= Ω ⊗ Ic (4.15d)

as well as (G⊗H)(G⊗H)> = (GG>)⊗(HH>) = Icn so (G⊗H) is an orthogonal
matrix whose columns are eigenvectors of Ω ⊗ Ic. Viewing the eigenvectors Vi
with indices i ∈ I1 = {1 + c(k − 1) : k ∈ [n]} as matrices Vi ∈ Rn×c, we have

V vi = gk ⊗ h1 which gives Vi = gkh
>
1 = c−

1
2 Diag(gk)1n×c and thus Q(Vi) =

1√
c
〈gk,1n〉1N ∝ 1N . Therefore, the rank of Ω is at most nc − (n − 1). For the

remaining indices j = l + c(k − 1), k ∈ [n], l ∈ [c] \ {1} it holds that

Vj1c = gkh
>
l 1c = gk〈hl,1c〉 = 0 (4.16)

thus Vj ∈ T0W. Denote the set of these indices by I2 = [nc] \ I1. By Lemma 4 it
holds that

〈V j1 , V j2〉 =
c

N
〈QV vj1 , QV vj2〉 =

c

N
〈V vj1 , Q>QV vj2〉 = 〈Vj1 , Vj2〉 = 0 (4.17)

for all j1, j2 ∈ I2 and ‖V j‖22 = c
N 〈QV vj , QV vj 〉 = ‖V vj ‖22 = 1 for j ∈ I2. We

additionally find

〈V j ,
1√
N

1N 〉 =

√
c

N
〈QV vj ,1N 〉 =

1√
c
〈Vj ,1n×c〉 = 0 j ∈ I2 (4.18)

by using Lemma 3. Because all columns of V are eigenvectors of Ω by Lemma 5,
this shows the assertion. ut

Lemma 7 (Lifting Map Lemma). Let S ∈ W and V ∈ Rn×c. Then

T (expS(V )) = expT (S)(Q(V )) . (4.19)

Proof. We have T (exp(V )) = exp(Q(V )) because for any multi-index γ

exp(Q(V ))γ = exp
( ∑
l∈[n]

Vl,γl

)
=
∏
l∈[n]

exp
(
Vl,γl

)
= T (exp(V ))γ . (4.20)

LetD ∈ Rn×n be a diagonal matrix with nonzero diagonal entries. Then T (DR) ∝
T (R) for any R ∈ Rn×c because

T (DR)γ =
∏
l∈[n]

(DR)l,γl =
( ∏
l∈[n]

Dll

)( ∏
l∈[n]

Rl,γl

)
∝ T (R)γ . (4.21)
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Due to T (S � V ) = T (S)� T (V ) it follows

T (expS(V )) ∝ T (S � exp(V )) = T (S)� exp(Q(V )) ∝ expT (S)(Q(V )) . (4.22)

Because both first and last term in (4.22) are clearly elements of ∆, this implies
the assertion. ut

Theorem 2 (Spectral Decomposition). Let Ω ∈ Rn×n be a symmetric ma-
trix of full rank such that Ω1n = 1n and let V ∈ Rnc×nc be given by Proposition 2.
Then the S-flow (3.6) is equivalent to

S(t) = expS0

( ∑
k∈I2

sk(t)Vk

)
(4.23)

ṡk(t) = λk〈Vk, S(t)〉, sk(0) = 0, k ∈ I2 (4.24)

where I2 := [nc] \ {1 + c(k − 1) : k ∈ [n]} and Vk ∈ Rn×c denotes the unique
matrix such that V vk is the k-th column of V .

Proof. By Propositions 1 and 2 it holds that

S(t) = T−1(P (t)) = T−1
(

expP0

( ∑
k∈I1∪I2

sk(t)V k

))
(4.25a)

= T−1
(

expP0

( ∑
k∈I2

sk(t)V k

))
= expS0

( ∑
k∈I2

sk(t)Vk

)
(4.25b)

where we used Lemma 7 as well as V k ∝ 1N for k ∈ I1 in (4.25b). Additionally,
for k ∈ I2 it holds

ṡk(t) = cn−1λk〈P (t), V k〉 = λk〈P (t), QVk〉 Lemma 2
= λk〈S(t), Vk〉 . (4.26)

ut

5 Experiments

Because W is not a flat space, standard methods are not canonically suitable
for numerical integration of assignment flows. A remedy is to construct a dif-
feomorphism ϕ : W → V and integrate the ϕ-related vector field in some flat
space V . Theorem 2 implicitly achieves this by parameterizing S-flows through
the coefficients sk(t), k ∈ I2 which live in the unbounded flat space R. Stan-
dard methods of numerical integration such as Runge-Kutta or linear multistep
methods are therefore directly applicable to the dynamics (4.24). In our em-
pirical examination, we consider a graph of 100 × 100 grid pixel nodes with
adjacency Ω computed analogous to nonlocal means denoising [3], i.e. the av-
eraging weight Ωi1,i2 is large if i1 is close to i2 in the image plane and if the
patch of pixels around i1 is similar to the patch of pixels around i2. We added
independent noise drawn from a normal distribution to each channel of the orig-
inal cartoon image in Fig. 1 and aim to recover the original prototype colors
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Fig. 2. Eigenvectors of the adjacency matrix used in Figure 1. More dominant parts
of the spectrum correspond to low-frequency eigenvectors.

in the RGB feature space. Euclidean distances for each pixel-prototype pair are
collected in a distance matrix D ∈ Rn×c (here, n = 100 · 100, c = 47). The point
S0 = exp1W (− 1

ρD) is used to initialize a reference S-flow which we integrate
numerically by the geometric Euler method with step-length h = 0.1 until a
low-entropy assignment state is reached.

To visualize the spectral decomposition of Theorem 2, we first compute ap-
proximations to the dominant k ∈ {500, 1000, 1500} eigenvectors of Ω by lever-
aging sparsity. A spectral approximation of the reference S-flow is obtained by
dropping the remaining eigenvalues from (4.24), i.e. λj ← 0 for j > k. Numer-
ical integration with the explicit Euler method (constant step-length h = 0.1)
yields the integral label assignments shown in Fig. 1. As expected, the approx-
imation becomes progressively more faithful to the reference S-flow if a larger
fraction of the spectrum of Ω is considered. Note that Ω has full rank n = 104

so the approximations in Fig. 1 are obtained by considering at most 15% of its
spectrum. Clearly, the described method can lead to improved computational
efficiency, if the adjacency Ω can be well approximated by a low-rank matrix.
The given example illustrates that informative regularizations may be achieved
using relatively low-rank adjacency. We additionally observe that less dominant
eigenvalues correspond to high-frequency components (see Fig. 2). This is consis-
tent with the approximation behavior shown in Fig. 1; discarding the influence
of less dominant eigenvalues leads to smoothing out high-frequency detail while
retaining correct label assignment for largely uniform regions.

6 Conclusion

We have constructed an embedding of the assignment manifold W into a single
probability simplex ∆. Under this embedding, S-assignment flows are pushed to
replicator dynamics with linear fitness function. Because ∆ has intractably large
dimension, numerical integration can not be performed directly. However, we
show that the embedding into ∆ serves as a valuable tool to transfer structural
results on replicator dynamics to the study of assignment flows. Conversely,
Theorem 1 also identifies a class of replicator dynamics with linear fitness which
can be decomposed into much lower-dimensional S-flows. A systematic study of
applications is left for future work.
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