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Abstract

This paper studies a meta-simplex concept and geometric embedding framework
for multi-population replicator dynamics. Central results are two embedding theo-
rems which constitute a formal reduction of multi-population replicator dynamics
to single-population ones. In conjunction with a robust mathematical formal-
ism, this provides a toolset for analyzing complex multi-population models. Our
framework provides a unifying perspective on different population dynamics in
the literature which in particular enables to establish a formal link between
multi-population and multi-game dynamics.
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1 Introduction

1.1 Overview, Contribution

Evolutionary game theory (Hofbauer and Sigmund, 1998; Sandholm, 2010) is an estab-
lished framework for modeling problems in diverse areas ranging from mathematical
biology (Smith and Price, 1973; Smith, 1982; Hammerstein and Selten, 1994; Nowak,
2006; Leimar and McNamara, 2023) to economics (Gardner, 2003; Samuelson, 2016).
It assumes a dynamic perspective on games played by a large and well-mixed popula-
tion of agents. In this context, the earliest dynamical model of population state is the
replicator equation (Taylor and Jonker, 1978; Schuster and Sigmund, 1983), which has
since been generalized in several ways (Bednar and Page, 2007; Cressman and Tao,
2014) to accommodate more complex situations.

This paper provides an embedding approach for studying the following two classes
of scenarios within a single framework.

• Multi-population dynamics model multiple interacting populations or species. The
state space is a product manifold of multiple simplices, and payoff may depend on
the state of all populations. The resulting dynamics are multiple coupled replicator
dynamics on the product manifold of multiple simplices.

• Multi-game dynamics model agents that simultaneously play multiple games, earn-
ing cumulative payoff. The state space is a single simplex with dimension growing
exponentially in the number of games. Interaction between games occurs whenever
the population state is outside of a specific submanifold.
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Here, we study an embedding of multiple probability simplices into a combina-
torially large simplex of joint distributions. As further detailed in Section 8, our
approach is closely related to Segre embeddings of projective spaces (Görtz and Wed-
horn, 2020) which play a prominent role in many areas of mathematics and physics,
such as independence models in algebraic statistics (Drton et al, 2009) and entangle-
ment in quantum mechanics (Bengtsson and Zyczkowski, 2017). Based on this Ansatz,
we develop a geometric perspective and formalism to study the relationship between
replicator dynamics of multiple populations and multi-game replicator dynamics. In
particular, we demonstrate that the multi-game dynamics of Hashimoto (2006) share
a generic payoff structure with multi-population games.

Our work further constitutes a formal reduction of multi-population dynamics
to – a much higher-dimensional – single-population dynamics, which is helpful for
theoretical analysis. We demonstrate this by transferring two results on the asymptotic
behavior of replicator dynamics from the single-population to the multi-population
setting.

Concerning applications, our work aims to provide insight into the structure
of multi-population and multi-game dynamics, along with a robust mathematical
toolset for domain experts to analyze complex systems. Indeed, there is a growing
need for more powerful dynamical models in emerging applications. For instance,
Venkateswaran and Gokhale (2019) argue for the use of generalized replicator dynam-
ics to model interactions in nature – considering multi-player interaction in a
multi-game setting.

The present paper also extends our previous work on assignment flows (Aström
et al, 2017; Schnörr, 2020). They are dynamical systems that leverage interaction
along edges of a graph G to infer an assignment of class labels to the nodes of G from
node-wise data. Applications include structured prediction problems such as semantic
image segmentation in supervised (Sitenko et al, 2021) and unsupervised scenarios
(Zisler et al, 2020; Zern et al, 2020).

In (Boll et al, 2021), we have shown that assignment flows can be seen as multi-
population replicator dynamics and studied how payoff is transformed by embedding
the state space into a single simplex of joint distributions. In the present work, we
generalize this analysis to nonlinear payoff functions and provide a careful study of
the involved manifolds.

We also highlight previous findings on assignment flows and their relevance to the
evolutionary game theory community. In particular

• Zern et al (2022) present an exhaustive study of conditions under which certain
assignment flows converge to integer assignments. These are states in which only a
single played strategy remains in each population.

• Zeilmann et al (2020) have proposed a generically applicable framework for
geometric numerical integration which scales to large replicator dynamics.

• Hühnerbein et al (2021); Zeilmann et al (2023) have studied methods of learning
the parameters that generate replicator dynamics from data.
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1.2 Organization

Section 2 contextualizes assignment flows as multi-population replicator dynamics and
establishes related notation. Section 3 describes the proposed meta-simplex concept
and related geometric notions as well as the embedding theorems 3.1 and 3.5, which
constitute the main results of the present work. Section 4 gives three examples of
dynamics considered in prior work and establishes their relationship through the lens
of the geometric embedding theorems. Section 5 recapitulates a tangent space param-
eterization of replicator dynamics from the literature on assignment flows and studies
it in the context of geometric embedding. Section 6 highlights previous findings on
parameter learning for assignment flows. Section 7 demonstrates how the proposed
formal reduction of multi-population to single-population dynamics can be used as a
tool for formal analysis of asymptotic behavior. Section 8 gives an outlook on current
assignment flow developments and concludes the paper.

The present work substantially extends the conference paper (Boll et al, 2021) in the
following ways:

• The submanifold of embedded multi-population states is identified as a generalized
Wright manifold and its geometry is analyzed (Theorem 3.1).

• The embedding theorem of multi-population replicator dynamics is generalized to
nonlinear payoff functions (Theorem 3.5).

• Multi-game dynamics are studied as embedded multi-population replicator dynam-
ics (Section 4).

• Tangent space parameterization of replicator dynamics is studied in the context of
geometric embedding (Theorem 5.2).

1.3 Basic Notation.

For k ∈ N we use the shorthands [k] := {1, . . . , k} ⊂ N and 1k := (1, . . . , 1)⊤ ∈ Rk.
Angle brackets ⟨·, ·⟩ are used for both the standard inner product between vectors and
the Frobenius inner product between matrices. The Kronecker product of matrices
(Graham, 1981) is denoted by A ⊗ B. Componentwise multiplication of vectors x
and y is denoted by x ⋄ y, and by x

y the componentwise division of a vector x by
a strictly positive vector y. Likewise, logarithms and exponentials of vectors apply
componentwise. For vectors x ∈ Rc, the expression x ≥ 0 denotes xi ≥ 0 for all i ∈ [c].

2 Preliminaries

2.1 Fisher-Rao Geometry, Replicator Dynamics

In matrix games, players from a large population engage in two-player interactions.
For simplicity, we assume that each player chooses from a constant set of c strategies.
The payoff for a two-player interaction is then given by a c × c payoff matrix B. If
players change their strategy to imitate other players with more effective strategies, the
overall distribution p ∈ Sc of strategies in the population changes over time according
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to the well-known replicator dynamics

ṗ(t) = Rp(t)[Bp(t)], p(0) = p0 ∈ Sc, (1)

where
Sc = {p ∈ Rc : ⟨1c, p⟩ = 1, p > 0} (2)

denotes the relative interior of the probability simplex with c vertices and

Rp = Diag(p)− pp⊤ (3)

is called the replicator operator. We regard Sc as a Riemannian manifold with trivial
tangent bundle

TSc
∼= Sc × T0Sc, T0Sc = {v ∈ Rc : ⟨1c, v⟩ = 0} (4)

and equipped with the Fisher-Rao metric

⟨·, ·⟩g : TpSc × TpSc → R, (u, v) 7→
〈u
p
, v
〉
. (5)

The barycenter of Sc is denoted 1S = 1
c1c. Vectors in Rc are projected onto the

tangent space T0Sc by the linear map

Π0 : Rc → T0Sc, v 7→ Π0v = v − 1

c
⟨1c, v⟩1c. (6)

The manifold Sc has dimension c− 1. Two coordinate charts are particularly relevant
to the following discussion. A point p ∈ Sc ⊆ Rc has m-coordinates µ with

p = (µ, 1− ⟨1c−1, µ⟩), µ ∈ Rc−1, µ > 0, ⟨µ,1c−1⟩ < 1 (7)

and e-coordinates θ with

p =
1

Z(θ)
exp

(
θ

−⟨θ,1c−1⟩

)
, θ ∈ Rc−1, (8)

where Z(θ) normalizes the vector on the right-hand side such that p ∈ Sc, as defined
by (2). The e-coordinates θ are unconstrained and define a global chart for Sc.

For general references to Riemannian geometry, we refer to (Lee, 2018; Jost, 2017).
For references to information geometry which underlies the above definitions, see
(Amari and Nagaoka, 2007; Ay et al, 2017).

The mean payoff in a population with state p is ⟨p,Bp⟩. In particular, if B is
symmetric Bp = 1

2∂p⟨p,Bp⟩, then it is well known that (1) is the Riemannian gradient
ascent flow of mean payoff with respect to the metric (5). With an eye toward numerical
computation, a useful object is the lifting map

expp : T0Sc → Sc, expp(v) =
p ⋄ exp(v)
⟨p, exp(v)⟩

. (9)
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It can be shown that
expp = expp ◦Π0, (10)

with the projection Π0 given by (6), such that expp is well-defined on Rc. Further-
more, the mapping (9) is a first-order approximation to the Levi-Civita geodesics on
Sc (Aström et al, 2017). It is also closely related to the e-geodesics of information
geometry (Amari and Nagaoka, 2007).

2.2 Data Labeling and Assignment Flows

We have studied dynamics similar to (1) for data labeling on graphs. Given a graph
G = (V, E) and data on each node, the task is to infer node-wise classes. For example,
in image segmentation, the graph may be a grid graph of image pixels, and pixel-wise
data lives in some feature space, most basically a color space. Another example is
node-wise classification of citation graphs such as (Bollacker et al, 1998). Here, nodes
are academic papers and edges between them denote citations. The task is to classify
the topic of papers from node-wise features and citations.

In each case, graph connectivity is crucial information and a natural approach is
to facilitate interaction along graph edges to inform the labeling process. We further
abstract from the raw feature space of given data by lifting to a probability simplex
Sc on each node. The resulting state lives in the product manifold

W = Sc × · · · × Sc (11)

containing n = |V| copies of Sc which we call assignment manifold. For S ∈ W, let
RS denote the operator which applies RSi

on each node i ∈ [n]. Similarly, let

expS(V ), V ∈ T0W = (T0Sc)
n (12)

denote the map which applies (9) separately on each node, whose domain can be
extended

expS : Rn×c → W. (13)

due to (10). We will still call these objects replicator operator and lifting map,
respectively. Likewise, the projection

Π0 : Rn×c → T0W (14)

applies separately the mapping (6) on each node and the barycenter of W reads
1W = 1

c1n×c.
By defining a payoff function

F : W → Rn×c (15)

which has the state Si, Sj ∈ Sc of nodes i, j ∈ [n] interact exactly if ij ∈ E , we have
found a natural inference dynamic on G given by

Ṡ(t) = RS(t)

[
F
(
S(t)

)]
, S(0) = S0, (16)
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whose solution is called assignment flow. For labeling, payoff functions are designed
such that the state S is driven towards an extremal point of the set W. These states
unambiguously associate each node with a single class. From a game-theoretical per-
spective, the extremal points ofW are states in which only a single strategy is played in
each population. A more detailed overview can be found in the original work (Aström
et al, 2017) and the survey (Schnörr, 2020).

3 Embedding the Assignment Manifold

In our previous work (Boll et al, 2021), we showed that assignment flows can be seen
as multi-population replicator dynamics. Furthermore, we introduced a preliminary
formalism for embedding the state space of multi-population dynamics into a single,
much higher-dimensional meta-simplex of joint distributions. Assuming again the data
labeling perspective introduced in Section 2.2, one may enumerate all cn possible
assignments of c classes to n graph nodes. This enumeration represents data labeling
as a single decision between

N = cn (17)

alternatives which we view as pure strategies of a single population game on the
meta-simplex SN .

Here, we describe a refined version of the embedding formalism as well as several
additional results, generalizing and expanding our earlier findings. Note that the pro-
posed meta-simplex SN is not to be confused with the meta-simplex concept proposed
by Argasinski (2006). The latter explicitly considers the relative size of populations
and has much lower dimension.

To simplify notation, we assume that agents of each population have the same
number c of available pure strategies. However, the following results remain valid in
more general scenarios of variable strategy sets. In addition, we index entries of vectors
p ∈ SN by multi-indices [c]n as opposed to integer indices in [cn] to improve readability.
The component γi of a multi-index γ ∈ [c]n indexes a label γi ∈ [c] at vertex i ∈ [n].

We consider the following maps, defined componentwise by

T : W → T ⊆ SN , T (W )γ :=
∏
i∈[n]

Wi,γi
for all γ ∈ [c]n (18a)

Q : Rn×c → RN , Q(X)γ :=
∑
i∈[n]

Xi,γi
for all γ ∈ [c]n (18b)

M : RN → Rn×c, M(x)ij :=
∑

γ∈[c]n : γi=j

xγ for all (i, j) ∈ [n]× [c]. (18c)

The particular choice of these maps will be justified by laying out several compatibility
properties which intricately link them to each other and to the geometries of W and
SN . Specifically,

• T realizes the concept of enumerating labelings in the sense that the extremal points
of W are bijectively mapped to the extremal points of SN .
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• The restriction of M to T inverts T by computing node-wise marginals. We choose
the larger domain RN for M such that it becomes the adjoint mapping of Q (ref
Lemma 3.4).

Theorem 3.1 (assignment manifold embedding). The map T : W → T ⊆ SN is
an isometric embedding of W equipped with the product Fisher-Rao geometry, into SN

equipped with the Fisher-Rao geometry. On its image T (W) =: T ⊆ SN , the inverse
is given by marginalization

M |T = T−1 : T → W. (19)

Proof. Section B.1.

In view of the expression (18a), it is clear that T is precisely the set of rank-1
tensors in SN ⊆ RN ∼= (Rc)n. In addition, we have the following interpretation of
points T (W ) ∈ T within the simplex of joint distributions SN .

Proposition 3.2 (maximum entropy property). For every W ∈ W, the distri-
bution T (W ) ∈ SN has maximum entropy among all p ∈ SN subject to the marginal
constraint Mp =W , with M given by (18c).

Proof. Section B.2.

In general, each collection of marginal distributions S ∈ W has (infinitely) many
possible joint distributions. Proposition 3.2 shows that T precisely selects the least
informative one among them. This situation is illustrated in Figure 1.

0.0

0.1

0.2

0.3

0.4

0.5

(a) A randomly generated joint distribu-
tion of S1 and S2.

0.0

0.1

0.2

0.3

0.4

0.5

(b) The maximum-entropy joint distribu-
tion T (S) of S1 and S2.

Fig. 1: Marginals distributions S = (S1, S2) and two possible conforming joint distri-
butions. Joint distribution values are scaled by a factor of c for visual clarity.

Theorem 3.1 expresses an intricate relationship between the product Fisher-Rao
geometry of W and the Fisher-Rao geometry of SN . A similar compatibility is found
between the lifting map (9) on W and its analog on SN .
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Lemma 3.3 (Lifting Map Lemma). Let S ∈ W and V ∈ Rn×c. Then the mappings
T,Q given by (18) satisfy

T
(
expS(V )

)
= expT (S)

(
Q(V )

)
, (20)

where expS on the left is given by (12) and expT (S) on the right naturally extends the
mapping (9).

Proof. Section B.3.

We will also frequently use the following useful identity connecting Q to marginal-
ization.
Lemma 3.4 (Q Adjoint Lemma). M and Q given by given by (18) are adjoint
linear maps with respect to the standard inner product, i.e. for each p ∈ RN and each
V ∈ Rn×c it holds that

⟨p,Q(V )⟩ = ⟨Mp, V ⟩. (21)

Proof. Let p ∈ RN and V ∈ Rn×c, then

⟨p,Q(V )⟩ =
∑

γ∈[c]n

pγQ(V )γ =
∑

γ∈[c]n

pγ
∑
l∈[n]

Vl,γl
=

∑
l∈[n]

∑
j∈[c]

∑
γl=j

pγVl,γl
(22a)

=
∑
l∈[n]

∑
j∈[c]

Vl,j
∑
γl=j

pγ
(18c)
=

∑
l∈[n]

∑
j∈[c]

Vl,j(Mp)l,j (22b)

= ⟨Mp, V ⟩. (22c)

Our main result stated next is that the embedding T : W → SN maps multi -
population replicator dynamics on W to single-population replicator dynamics on SN

by a transformation of payoff functions. This generalizes our earlier finding (Boll et al,
2021) to arbitrary nonlinear payoffs.

Theorem 3.5 (Multi-Population Embedding Theorem). For any payoff func-
tion F : W → Rn×c, the multi-population replicator dynamics

Ẇ = RW [F (W )], W (0) =W0 (23)

on W is pushed forward by T to the replicator dynamics

ṗ(t) = Rp(t)F̂
(
p(t)

)
, p(0) = T (W0), F̂ = Q ◦ F ◦M, (24)

on SN and the map T satisfies

dT |W [RW [X]] = RT (W )Q[X], for all X ∈ Rn×c and W ∈ W. (25)

Proof. Section B.4.
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Intuitively, the structure of F̂ in (24) can be seen as follows. The joint population
state p ∈ SN is first marginalized and payoff F (Mp) is computed from the marginal
multi-population state. Theorem 3.5 now shows that when multi-population state
W ∈ W is seen as factorizing joint population state p ∈ SN according to p = T (W ),
then the payoff gained in state W is transformed by Q to induce replicator dynamics
of the joint population state.

In the following, leading examples will be matrix games, i.e. linear payoff func-
tions that model two-player interactions. Note, however, that Theorem 3.5 applies to
arbitrary nonlinear payoff functions, including multi-player interactions.

Fig. 2: The embedded submanifold T ⊆ SN , N = 4. For two marginal distributions,
this is known as the Wright manifold (Hofbauer and Sigmund, 1998, Section 18.8),
(Chamberland and Cressman, 2000).

4 Multiple Populations and Multiple Games

Because both M and Q are linear operators, generalized matrix games on multiple
populations reduce to simple matrix games of the joint population state exactly if the
payoff F is a linear function of the multi-population state. Here, we give two examples
of multi-population games, one from the assignment flow literature and one from game
theory. To this end, denote by

s := vecrow(S) ∈ Rnc (26)

a vectorized multi-population state which contains all entries of W ∈ W ⊆ Rn×c

stacked row-wise. Table 1 summarizes the scenarios discussed in the following.
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Table 1: Structure of payoff (29) for simple
instances of different games.

S-Flow EGN Multi-Game

Payoff A = Ω⊗ Ic A = Ω⊗B A = In ⊗B

S-flows (Savarino and Schnörr, 2020) define payoff by averaging the state S accord-
ing to a weighted graph adjacency matrix Ω ∈ Rn×n. The resulting assignment flow
with vectorized state (26) reads

ṡ(t) = Rs(t)[(Ω⊗ Ic)s(t)], s(0) = s0. (27)

This dynamical system promotes similarity of adjacent populations. Depending on the
initialization s0, ‘pockets of consensus’ are formed. It has also been shown that these
dynamics converge to extremal points of W for almost all initializations under weak
conditions (Zern et al, 2022).

Evolutionary Games on Networks (EGN) (Madeo and Mocenni, 2015; Iacobelli et al,
2016) are dynamics which generalize (27) by incorporating payoff matrices for games
played between players of adjacent populations. In the simplest case, all such games
have a constant payoff matrix B ∈ Rc×c. Then, the multi-population replicator
dynamics of EGN read

ṡ(t) = Rs(t)[(Ω⊗B⊤)s(t)], s(0) = s0. (28)

Both (27) and (28) have a linear (in the vectorized state s) payoff function. Let

A ∈ Rnc×nc (29)

be an arbitrary payoff matrix for the vectorized state. Then by Lemma 3.4 and
Theorem 3.5, the embedded dynamics in T ⊆ SN read

ṗ(t) = Rp(t)[QAQ
⊤p(t)], p(0) = T (s0). (30)

The multi-game dynamics of Hashimoto (2006) can also be written as a matrix game
in SN . Given matrices A(i) ∈ Rc×c, i ∈ [n], it reads

ṗ(t) = Rp(t)[Ap(t)], p(0) = p0, Aα,β =
∑
i∈[n]

A
(i)
αi,βi

. (31)

The structure of this payoff matrix has a natural shape within our formalism, too.

Lemma 4.1. The payoff matrix in (31) can be written as A = QAQ⊤ where A denotes
the block diagonal matrix with diagonal blocks A(i).
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Proof.

(QAQ⊤)α,β = ⟨eα, QAQ⊤eβ⟩ = ⟨Q⊤eα, AQ
⊤eβ⟩ (32a)

=
∑
i∈[n]

⟨eαi , A
(i)eβi⟩ =

∑
i∈[n]

A
(i)
αi,βi

(32b)

In particular, if all single-game payoff submatrices are the same A(i) = B ∈ Rc×c,
then multi-game dynamics have payoff A = In ⊗B.

It was shown by Hashimoto (2006) that the multi-game dynamics (31) do not
generally decompose into individual single-game dynamics, unless the initialization
is on the Wright manifold (see Figure 2). The set T ⊆ SN defined by (18a) is a
generalization of the Wright manifold for n > 2 and Theorem 3.5 generalizes the
decomposition of multi-game dynamics to more than two populations. For p(0) ∈ T ,
the dynamics (31) is the embedded dynamics of

ṡ(t) = Rs(t)[As(t)], s(0) =Mp(0) (33)

by Lemma 4.1 and Theorem 3.5. Since A is block diagonal, (33) is a collection of
non-interacting single-game replicator dynamics

Ẇi(t) = RWi(t)[A
(i)Wi(t)], Wi(0) = (Mp(0))i, i ∈ [n] (34)

in accordance with the findings of Hashimoto (2006) for the specific case n = 2.

5 Tangent Space Parameterization

Multi-population replicator dynamics evolve in the curved space W and the usual
parameterization in m-coordinates of information geometry is subject to simplex con-
straints on the state. With an eye toward numerical integration, it is desirable to
instead parameterize replicator dynamics in a flat and unconstrained vector space.
This was done in (Zeilmann et al, 2020) using Lie group methods.

Theorem 5.1 (Proposition 3.1 in (Zeilmann et al, 2020)). The solution for multi-
population replicator dynamics

Ẇ (t) = RW (t)[F (W (t))], W (0) =W0 (35)

in W admits the parameterization

W (t) = exp1W
(V (t)) (36a)

V̇ (t) = Π0F (exp1W
(V (t))), V (0) = Π0 logW0 (36b)

in the tangent space V (t) ∈ T0W.
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With regard to the Embedding Theorem 3.5, it turns out that while T maps
assignment matrices W ∈ W to joint states p ∈ SN , Q assumes a corresponding role
for tangent vectors in T0W.

Theorem 5.2 (Tangent Space Embedding Theorem). The multi-population
tangent space replicator dynamics

V̇ = Π0F
(
exp1W

(V )
)
, V (0) = V0 (37)

on T0W is pushed forward by Q to the tangent space replicator dynamics

U̇ = Π0F̂
(
exp1N

(U)
)
, U(0) = Q(V0), F̂ = Q ◦ F ◦M (38)

on T0SN .

Proof. Denoting U = QV and using the lifting map (Lemma 3.3), we directly compute

U̇ = QV̇ = QΠ0F
(
exp1W

(V )
)

(39a)

= Π0QF
(
exp1W

(V )
)

by Lemma A.3 (39b)

= Π0QF
(
(M ◦ T )

(
exp1W

(V )
))

by (19) (39c)

= Π0QF
(
M exp1N

(QV )
)

by Lemma 3.3 (39d)

= Π0QF
(
M exp1N

(U)
)

(39e)

= Π0F̂
(
exp1N

(U)
)
. (39f)

Pushforward via Q thus preserves the shape of (37) up to the same fitness function

transformation F̂ = Q ◦ F ◦ T−1 from Theorem 3.5.
The set imgQ ⊆ T0SN contains exactly those tangent vectors corresponding to

assignments T ⊆ SN via lifting, because T (W ) = T (exp1W
)(V ) = exp1N

(QV ) for any

W ∈ W and V = exp−1
1W

(W ) by Lemma 3.3. In particular, the set imgQ in which U
evolves, is a linear subspace of T0W. This is a reason to study the tangent space flow
(38) rather than the corresponding replicator dynamics if applicable, because T ⊆ SN

is the (curved) set of rank-1 tensors in SN .

6 Learning Replicator Dynamics from Data

Several applications have been proposed for the replicator dynamics of Section 4
including as a model of human brain functioning (Madeo et al, 2017), collective learn-
ing (Sato and Crutchfield, 2003), epileptic seizure onset detection (Hamavar and Asl,
2021), task mapping (Madeo et al, 2020) and collective adaptation (Sato et al, 2005).
Assignment flows have been applied recently to the segmentation of digitized vol-
ume data under layer ordering constraints (Sitenko et al, 2021) (which reflect prior
knowledge about tissues and anatomical structure) as well as for unsupervised image
labeling tasks, employing spatial regularization (Zisler et al, 2020; Zern et al, 2020).
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Fig. 3: Left : Noisy input assignment of c = 47 colors to the pixels of an image. Center :
Limit of an EGN flow (28) with learned interaction in 3 × 3 pixel neighborhoods.
Right : Ground truth noise-free color assignment.

This small sample of examples illustrates that replicator dynamics can act as pow-
erful data models in diverse applications. In situations where only partial knowledge
about the system is available, system parameters may also be learned from data. To
this end, Hühnerbein et al (2020) have studied the use of adjoint integration to com-
pute the model sensitivity of assignment flows, i.e. the gradient of system state with
respect to parameters generating the flow.

Suppose we integrate a general dynamical system generated by parameters p and
wish for the final state v(T ) to minimize some loss function L. The parameter learning
problem for a fixed time horizon T > 0 then reads

min
p

L(v(T, p)) (40a)

subject to v̇(t) = f(v(t), p, t), t ∈ [0, T ], (40b)

v(0) = v0, (40c)

and a central quantity of interest is the gradient ∂pL(v(T, p)). It can be approxi-
mated in a discretize-then-optimize fashion by first choosing a discretization of the
ODE (40b) on [0, T ] and subsequently computing the gradient of the discrete scheme
used for computing L(v(T, p)). This approach is easy to implement by using auto-
matic differentiation software Baydin et al (2018). However, it entails a large memory
footprint in practical applications because system state v(ti) needs to be saved for
all discretization points. To circumvent this issue, one may instead proceed in an
optimize-then-discretize fashion as follows.

Theorem 6.1 (Theorem 6 of (Hühnerbein et al, 2020)). The gradient of (40) is given
by

∂pL(v(T, p)) =
∫ T

0

dpf(v(t), p, t)
⊤λ(t)dt (41)

where dpf denotes the differential of f with respect to p and x(t) and λ(t) solve

v̇(t) = f(v(t), p, t), v(0) = v0, (42a)
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λ̇(t) = −dvf(v(t), p, t)
⊤λ(t), λ(T ) = ∂L(v(T )). (42b)

By choosing a quadrature for the integral (41), Theorem 6.1 allows to compute
the desired gradient without the need to save system state at all discretization points.
Moreover, it has been shown (Hühnerbein et al, 2020; Sanz-Serna, 2016) that for
particular symplectic integrators, discretization commutes with optimization, i.e. both
orders of operation yield the same gradient.

Since the tangent space parameterization (36) evolves on the unconstrained flat
space T0W, Theorem 6.1 is directly applicable to it. An image labeling example is
shown in Figure 3. Here, the data is modeled by EGN dynamics (28) with graph
adjacency matrix Ω representing pixel neighborhoods (3 × 3). Starting from a noisy,
high-entropy assignment of pixels to color prototypes (c = 47), the goal is to learn a
label interaction matrix B ∈ Rc×c such that EGN dynamics (28) drive the state to a
given noise-free assignment after the fixed integration time T = 15. We initialized B
as identity matrix and performed 100 steps of the Adam optimizer to minimize cross-
entropy between the ground truth assignment and the assignment state reached by
EGN dynamics. This training procedure is highly scalable – for the 256 × 256 pixel
image in Figure 3, training takes less than a minute on a laptop computer and requires
around 1.3GB of vRAM.

7 Asymptotic Behavior

A central topic in population dynamics is the study of how the properties of the
underlying game characterized by the payoff function relate to steady states of the
dynamical model. In this section, we describe how

• Nash equilibria (NE) and
• Evolutionarily stable states (ESS)

of multi-population games and their replicator dynamics behave under the embedding
(18a). Nash equilibria for multi-population games are population states at which no
agent (in any population) has payoff to gain from unilaterally switching strategies.

Definition 7.1 (Nash Equilibrium). Let W, the closure of W be the set of multi-
population states (n populations, c strategies) and let F : W → Rn×c be the payoff
for a multi-population game. The set of Nash equilibria of F is defined as

NE(F ) = {W ∈ W | ∀i ∈ [n], ∀j ∈ supp(Wi), ∀k ∈ [c] : F (W )i,j ≥ F (W )i,k} (43)

Definition 7.1 naturally extends the classic notion of Nash equilibrium to multi-
population games. Nash equilibria are preserved if the multi-population game is
embedded as specified by Theorem 3.5.

Theorem 7.2 (Embedded Nash Equilibria). Let F : W → Rn×c be a multi-

population game on W and F̂ = Q ◦ F ◦M be the related population game on SN .
Then

T
(
NE(F )

)
= NE(F̂ ) ∩ T . (44)
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Proof. Let W ∈ NE(F ) and let α ∈ supp(T (W )) be arbitrary. Then

F̂ (T (W ))α = (QF (W ))α =
∑
l∈[n]

Fl,αl
(W ) (45a)

≥
∑
l∈[n]

Fl,βl
(W ) = F̂ (T (W ))β , ∀β ∈ [c]n, (45b)

because αl ∈ supp(Wl), ∀l ∈ [n], by Lemma A.2 and W is a Nash equilibrium of

F . This implies T (NE(F )) ⊆ NE(F̂ ) ∩ T . Conversely, let p ∈ NE(F̂ ) ∩ T have shape
p = T (W ) and let αl ∈ supp(Wl), ∀l ∈ [n]. Then α ∈ supp(p) by Lemma A.2 and∑

l∈[n]

Fl,αl
(W ) = F̂ (p)α ≥ F̂ (p)β =

∑
l∈[n]

Fl,βl
(W ), ∀β ∈ [c]n, (46)

because p is a Nash equilibrium. Choose β ∈ [c]n such that it matches α at all positions
but i ∈ [n]. Then (46) implies Fi,αi

(W ) ≥ Fi,βi
(W ) for arbitrary βi ∈ [c] which shows

NE(F̂ ) ∩ T ⊆ T (NE(F )).

Definition 7.3 (Evolutionarily Stable State (ESS)). A multi-population state
W ∗ ∈ W is called an evolutionarily stable state (ESS) of a game F : W → Rn×c, if
there is an environment U ⊆ W of W ∗ such that

⟨W −W ∗, F (W )⟩ < 0, ∀W ∈ U \ {W ∗}. (47)

This generalization of the classic ESS (Smith and Price, 1973) to multi-population
settings is called Taylor ESS by Sandholm (2010). Within our embedding framework,
an apparent reason recommends Definition 7.3 over the weaker notion of monomorphic
ESS (Cressman, 1992).

Theorem 7.4 (Embedded ESS). Let F : W → Rn×c be a multi-population game.
Then W ∗ is an ESS of F exactly if there exists an environment U ⊆ T of T (W ∗) such
that

⟨p− T (W ∗), F̂ (p)⟩ < 0, ∀ p ∈ U \ {T (W ∗)}, (48)

where F̂ = Q ◦F ◦M denotes the embedded single-population game on SN as specified
by Theorem 3.5.

Proof. Since U ⊆ T , we may write p = T (W ) for W in an environment M(U) ⊆ W
of W ∗. (48) then reads

⟨T (W )− T (W ∗), F̂ (T (W ))⟩ = ⟨T (W )− T (W ∗), QF (MT (W ))⟩ (49a)

= ⟨M(T (W )− T (W ∗)), F (W )⟩ (Lemma 3.4) (49b)

= ⟨W −W ∗, F (W )⟩ (49c)

and the last row is strictly smaller than 0 for all W ∈M(U) \ {W ∗} exactly if W ∗ is
an ESS of F according to Definition 7.3.
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One useful aspect of Theorem 3.5 is that it formally reduces multi-population
replicator dynamics to single-population ones. This enables us to transfer analysis of
e.g. asymptotic behavior from the single-population to the multi-population setting.
We first summarize standard results on the asymptotic behavior of replicator dynamics
derived from a potential function and refer to Sandholm (2010) for a comprehensive
overview.

Theorem 7.5 (Replicators converge to NE). Let Ĵ : Sc → R be a C1 potential

such that the induced payoff function F̂ = Π0∇Ĵ is Lipschitz on Sc. Then for any
internal point p0 ∈ Sc, the replicator dynamics

Ẇ (t) = Rp(t)[F̂ (p)], p(0) = p0 (50)

converge to a Nash equilibrium.

Proof. Because F is Lipschitz, the forward trajectories of the dynamics (50) are unique

by the Picard-Lindelöf theorem. The potential Ĵ is a strict Lyapunov function for
replicator dynamics and unique forward trajectories converge to restricted equilibria
(Hofbauer, 2001; Sandholm, 2001). Since replicator dynamics do not satisfy Nash
stationarity, there may be restricted equilibria which are not Nash equilibria. However,
no internal trajectory converges to any of these points (Bomze, 1986). The solution
trajectories of (50) are internal trajectories because p0 is an internal point and Sc is
invariant under all replicator dynamics with Lipschitz payoff function for finite time,
as is clear from e.g. the tangent space parameterization (36).

There is a simple relationship between potential functions in the multi-population
and single-population settings.

Lemma 7.6 (Potential Embedding). If F : W → T0W has potential J , then F̂ =

Q ◦ F ◦M has potential Ĵ = J ◦M .

Proof. For Ĵ(p) = (J ◦M)(p), we directly compute

∇Ĵ(p) = (DM(p))⊤∇J(W ) = (M)⊤ ◦ ∇J(W ) = (Q ◦ ∇J ◦M)(p) (51)

by denoting W =M(p) and using Lemma 3.4.

We can now use the embedded potential of Lemma 7.6 and embedded Nash
equilibria of Theorem 7.2 to generalize the findings of Theorem 7.5 to multiple
populations.

Theorem 7.7 (Multi-Population Replicators converge to NE). Let J : W → R
be a C1 potential such that the induced payoff function F = Π0∇J is Lipschitz on W.
Then, for any internal point W0 ∈ W, the multi-population replicator dynamics

Ẇ (t) = RW (t)[F (W )], W (0) =W0 (52)

converge to a Nash equilibrium.

17



Proof. Let p(t) = T (W (t)). Then p(t) follows the single-population replicator dynam-

ics (24) by Theorem 3.5 which are induced by the embedded potential Ĵ(p) = J ◦M
due to Lemma 7.6 and start at the interior point T (W0) of SN . By Theorem 7.5, p(t)

converges to a NE of F̂ = Π0 ◦ Q ◦ F ◦M on SN . Since p(t) = T (W (t)) ∈ T for all
times t, the limit point necessarily lies in the closure of T . Theorem 7.2 then shows
the assertion.

By (Sandholm, 2001, Proposition 3.1) all Nash equilibria satisfy the KKT opti-
mality conditions for maximizing J subject to simplex constraints. If J is concave, the
KKT conditions are sufficient optimality conditions and thus (50) converges to a local
maximizer. In addition, W is a Nash equilibrium exactly if F (W ) lies in the normal
cone of the state space at W (Harker and Pang, 1990; Nagurney, 1998). Thus, conver-
gence of (50) to a boundary point which is not an extremal point only occurs if the
trajectory reaches the boundary exactly perpendicularly. For assignment flows, it has
been known that convergence to a non-extremal point of W is an unusual occurrence.
In fact, this behavior is not observed at all in the numerical solution of labeling prob-
lems for real-world data. Aström et al (2017) thus conjectured that convergence to
a non-extremal point only occurs for a null set of initial population states. This was
shown to be true for non-negative, linear fitness functions derived from a quadratic
potential (Zern et al, 2022). From a game-theoretical perspective, only extremal points
can be ESS under the posed conditions.

Note that the content of Theorem 7.7 is likely known to experts. We present it here
to illustrate the power of the proposed formalism around Theorem 3.5 which provides a
mathematical toolset for reducing the analysis of multi-population replicator dynamics
to single-population ones.

8 Conclusion

The proposed embedding framework for multi-population replicator dynamics pro-
vides a robust mathematical toolset for modeling complex population interactions. It
formally reduces the complex multi-population case to a single-population one, sim-
plifying subsequent analysis. Current developments in the framework of assignment
flows suggest multiple extensions of the present work.

In Savarino et al (2023), assignment flows are characterized as critical points of an
action functional within a geometric formalism of mechanics. An analogous character-
ization was previously suggested for single-population replicator dynamics (Raju and
Krishnaprasad, 2018) under assumptions which are valid only in the special case n = 2
(Savarino et al, 2023, Section 4.4). In light of the present paper, a natural question
is whether both perspectives are equivalent under embedding of the multi-population
case.

A generalized perspective on assignment flows was proposed by Schwarz et al
(2023). The authors study a dynamical system on a product of density matrix mani-
folds called Quantum State Assignment Flow. Although density matrices can represent
entangled states and constitute a strict generalization of discrete probability measures,
the underlying information geometric framework is broadly analogous. This suggests
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that generalized, quantum embedding results, along the lines introduced in the present
paper, should be achievable.

We briefly elaborate this point. Quantum mechanics is formulated on complex
projective space P(Cc) = Pc−1, i.e. the state of an c-dimensional quantum system lives
in the (c−1)-dimensional projective space. The states of a composite quantum system
with n components comprise the space P

(⊗n
i=1 Cc

) ∼= PN−1, the projective space of
the tensor products and N = cn. The Segre embedding σ (Smith et al, 2000) is an
analytic isometric embedding of products of projective spaces into higher dimensional
projective space (Chen, 2013), i.e.

σ : Pc−1 × · · · × Pc−1 ↪→ PN−1, (53)

where the product contains n copies of Pc−1. The map σ is an isometry if the product
of projective spaces is equipped with the product of Fubini-Study metrics and the
projective space of the tensor product with the high dimensional Fubini-Study metric.
The separable (unentangled) quantum states of the composite system are precisely
the image of the Segre embedding. Furthermore, Pc−1 admits a description as a toric
variety with base △c, the simplex with boundary (Bengtsson and Zyczkowski, 2017).
Exploiting this structure makes it possible to choose compatible smooth embeddings

ι : Sc × · · · × Sc ↪→ Pc−1 × · · · × Pc−1, (54)

and to define a projection map πc : Pc−1 → △c. The embedding T given by (18a) is
compatible with the Segre embedding σ in the sense that the diagram

Pc−1 × · · · × Pc−1 PN−1

Sc × · · · × Sc SN

σ

πNι

T

(55)

is well-defined and commutes. Well-defined refers here to the fact that πN ◦σ ◦ ι maps
to SN ⊂ △N . Additionally, similar compatibility relations remain valid when quantum
states are described in terms of density matrices.

Elaborating the consequences of the results in this paper in connection with
the more general quantum state assignment flow approach is an attractive research
problem for future work.
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Ay N, Jost J, Vân Lê H, et al (2017) Information Geometry, vol 64. Springer

Baydin A, Pearlmutter B, Radul A, et al (2018) Automatic Differentiation in Machine
Learning: a Survey. J Machine Learning Research 18:1–43

Bednar J, Page S (2007) Can game(s) theory explain culture?: The emergence of
cultural behavior within multiple games. Rationality and Society 19(1):65–97.
https://doi.org/10.1177/1043463107075108

Bengtsson I, Zyczkowski K (2017) Geometry of Quantum States: An Introduction to
Quantum Entanglement, 2nd edn. Cambridge University Press
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Sitenko D, Boll B, Schnörr C (2021) Assignment Flow For Order-Constrained OCT
Segmentation. Int J Computer Vision 129:3088–3118

Smith JM (1982) Evolution and the theory of games. In: Did Darwin get it right?
Essays on games, sex and evolution. Springer, p 202–215

Smith JM, Price GR (1973) The logic of animal conflict. Nature 246(5427):15–18

Smith KE, Kahanpää L, Kekäläinen P, et al (2000) An Invitation to Algebraic
Geometry. Springer

Taylor PD, Jonker LB (1978) Evolutionary stable strategies and game dynamics.
Mathematical biosciences 40(1-2):145–156

Venkateswaran VR, Gokhale CS (2019) Evolutionary dynamics of complex multiple
games. Proceedings of the Royal Society B: Biological Sciences 286(1905):20190900

Zeilmann A, Savarino F, Petra S, et al (2020) Geometric Numerical Integration of the
Assignment Flow. Inverse Problems 36(3):034004 (33pp)
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Appendix A Additional Lemmata

Lemma A.1. The mapping T : W → T defined by (18a) is injective.

Proof. Let W (1),W (2) ∈ W satisfy T (W (1)) = T (W (2)). Let γ ∈ [c]n be an arbitrary
multi-index. Fix an arbitrary vertex i ∈ [n] and let α ∈ [c]n match γ at all vertices
k ∈ [n] \ {i}. Then T (W (1)) = T (W (2)) implies both T (W (1))γ = T (W (2))γ and
T (W (1))α = T (W (2))α. Division thus gives

W
(1)
i,αi

W
(2)
i,γi

=W
(1)
i,γi

W
(2)
i,αi

. (A1)

Since W (1),W (2) ∈ W, the entries of row i sum to 1. Using this and the fact that
αi ∈ [c] is arbitrary, we find

W
(2)
i,γi

=
∑
j∈[c]

W
(1)
i,j W

(2)
i,γi

(A1)
=

∑
j∈[c]

W
(1)
i,γi

W
(2)
i,j =W

(1)
i,γi

. (A2)

Since γi ∈ [c] was arbitrary, this shows W (1) =W (2).

Lemma A.2. For everyW ∈ W one has γ ∈ supp(T (W )) if and only if γi ∈ supp(Wi)
for all i ∈ [n].

Proof. We directly compute

supp(T (W )) = {γ ∈ [c]n : T (W )γ > 0} (A3)

= {γ ∈ [c]n :
∏
i∈[n]

Wi,γi > 0} (A4)

= {γ ∈ [c]n : Wi,γi
> 0, ∀i ∈ [n]} (A5)

= {γ ∈ [c]n : γi ∈ supp(Wi), ∀i ∈ [n]}. (A6)

Lemma A.3. For any V ∈ Rn×c it holds QΠ0V = Π0QV for the mappings Q,Π0

given by (18b) and (14).

Proof. For arbitrary γ ∈ [c]n, we compute

(QΠ0V )γ =
∑
i∈[n]

(Π0Vi)γi =
∑
i∈[n]

(
Vi,γi − ⟨Vi,

1

c
1c⟩

)
= (QV )γ − ⟨V, 1

c
1n×c︸ ︷︷ ︸

=M1S

⟩ (A7)

and thus, by Lemma 3.4 ,

QΠ0V = QV − ⟨QV, 1
N

1N ⟩1N = Π0QV, (A8)

which was the assertion.
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Lemma A.4. Let γ ∈ [c]n. The differential of T at W ∈ W in direction V ∈ T0W is
given by

dT |W [V ] =
(
dTγ |W [V ]

)
γ∈[c]n

= T (W ) ⋄Q
[ V
W

]
. (A9)

Proof. Suppose η : (−ε, ε) → W is a smooth curve with η(0) = W and η̇(0) = V , for
some ε > 0. Let γ ∈ [c]n be arbitrary and consider the component Tγ . Then

dTγ |W [V ] = d
dtTγ(η(t))

∣∣
t=0

= d
dt

∏
i∈[n]

ηi,γi
(t)

∣∣
t=0

(A10a)

=
∑
k∈[n]

η̇k,γk
(0)

∏
i∈[n]\{k}

ηi,γi(0) =
∑
k∈[n]

Vk,γk

∏
i∈[n]\{k}

Wi,γi (A10b)

=
∑
k∈[n]

Vk,γk

Wk,γk

Tγ(W )
(18b)
= Tγ(W )Qγ

( V
W

)
. (A10c)

Because of dT |W [V ] = (dTγ |W [V ])γ∈[c]n the expression in (A9) directly follows.

Lemma A.5. It holds kerQ = {Diag(d)1n×c : d ∈ Rn, ⟨d,1n⟩ = 0} as well as
rankQ = nc− (n− 1).

Proof. Let V ∈ kerQ and let γ, γ̃ be two multi-indices which differ exactly at position
k but are otherwise arbitrary. We have (QV )γ = (QV )γ̃ = 0 because V ∈ kerQ. Thus

(QV )γ̃ = Vk,γ̃k
+

∑
i∈[n]\{k}

Vi,γ̃i
= (QV )γ = Vk,γk

+
∑

i∈[n]\{k}

Vi,γi
(A11)

which implies Vk,γ̃k
= Vk,γk

, i.e. V = Diag(d)1n×c for some d ∈ Rn since k was
arbitrary. Further, it holds

0 = (QV )γ =
∑
i∈[n]

Vi,γi
=

∑
i∈[n]

di = ⟨d,1n⟩. (A12)

Thus, we have shown

kerQ ⊆ {Diag(d)1n×c : d ∈ Rn, ⟨d,1n⟩ = 0}. (A13)

Conversely, let V be in the right-hand set. Then

(QV )γ =
∑
i∈[n]

Vi,γi
=

∑
i∈[n]

di = ⟨d,1n⟩ = 0 (A14)

for all γ ∈ [c]n which shows that (A13) is an equation. There are (n − 1) linearly
independent vectors d ∈ Rn with ⟨d,1n⟩ = 0, therefore Q has the specified rank.
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Appendix B Proofs

B.1 Proof of Theorem 3.1

Theorem B.1 (Theorem 3.1 in the main text). The map T : W → T is an isometric
embedding of W equipped with product Fisher-Rao geometry into SN equipped with
the Fisher-Rao geometry. On its image T (W) =: T ⊆ SN , the inverse is given by
marginalization

M |T = T−1 : T → W. (B15)

Proof. A standard argument (Lemma A.1) shows that T : W → T is injective. We
check that the inverse of T has the shape (19).

(MT (W ))i,j =
∑

γ : γi=j

∏
r∈[n]

Wr,γr
=

∑
γ : γi=j

Wi,j

∏
r∈[n]\{i}

Wr,γr
(B16)

=
∑

l∈[n]\{i}

∑
γl∈[c]

∏
r∈[n]\{i}

Wr,γr (B17)

=Wi,j

∑
k1∈[c]

W1,k1

∑
k2∈[c]

W2,k2
. . .

∑
kn∈[c]

Wn,kn
(B18)

=Wi,j

∏
r∈[n]\{i}

∑
γr∈[c]

Wr,γr︸ ︷︷ ︸
=1

=Wi,j . (B19)

Clearly, all component functions of T and T−1 are smooth. We will now show that T is
a topological embedding, i.e. a homeomorphism with respect to the subspace topology
of T ⊆ SN . Let

Q = Q(T0W) (B20)

denote the image of T0W under Q. Q is a linear subspace of T0SN because, for any
V ∈ T0W, we have

QV = QΠ0V = Π0QV ∈ T0SN (B21)

by Lemma A.3. In addition, Lemma A.5 shows kerQ∩T0W = {0}, since any matrix in
kerQ has constant row vectors. Thus, the restriction of Q to T0W is injective and since
T0W and Q have finite dimension, Q|T0W is a homeomorphism. The lifting map at
the barycenter is the inverse of the global e-coordinate chart of information geometry
up to a change of basis. In particular, exp1W

: T0W → W and exp1SN
: T0SN → SN

are homeomorphisms. Now let

ψ : T → Q, p 7→ ψ(p) = exp−1
1SN

(p) (B22)

which is well-defined due to Lemma 3.3 and denote the initial topology of T with
respect to ψ−1 by A. Then T is a homeomorphism of W and T equipped with the
topology A because

T = exp1SN
◦Q|T0W ◦ ψ−1 (B23)
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by Lemma 3.3. It remains to show that A coincides with the subspace topology of
T ⊆ SN . Note that the topology of Q is the subspace topology of Q ⊆ T0SN and recall
that exp1SN

: T0SN → SN is a homeomorphism. For a subset A ⊆ Q we thus have

A ∈ A ⇔ ψ(A) is open in Q (B24a)

⇔ exp−1
1SN

(A) = B ∩Q for an open set B ⊆ T0SN (B24b)

⇔ exp−1
1SN

(A) = exp−1
1SN

(A) ∩Q for an open set A ⊆ SN (B24c)

⇔ A = A ∩ exp1SN
(Q) for an open set A ⊆ SN (B24d)

⇔ A = A ∩ T for an open set A ⊆ SN . (B24e)

This shows that A is the subspace topology of T ⊆ SN and thus, T is a topological
embedding of W into SN .

We compute the rank of T by applying Lemma A.4. Let W ∈ W and V ∈ T0W be
in the kernel of dT |W . Then

0 = dT |W [V ] = T (W ) ⋄Q
[ V
W

]
(B25)

which implies V
W ∈ kerQ because T (W )γ ̸= 0 for all γ ∈ [c]n. By Lemma A.5 this

implies
V =W ⋄ (Diag(d)1n×c) = Diag(d)W (B26)

for some d ∈ Rn with ⟨d,1n⟩ = 0. From V ∈ T0W we find

0 = ⟨Vi,1c⟩ = di⟨Wi,1c⟩ = di, ∀i ∈ [n] (B27)

which shows V = 0 by (B26), i.e. dT |W has full rank. Thus, T is an injective immersion.
It remains to show that T is metric compatible. Suppose W ∈ W and U, V ∈ T0W

are arbitrary. Denoting the Fisher-Rao metric on SN by gSN we get

(T ∗gSN
)
W
(U, V ) = gSN

T (W )(dT |W [U ], dT |W [V ]) (B28a)

=
〈
dT |W [U ], 1

T (W ) ⋄ dT |W [V ]
〉

(B28b)

(A9)
=

〈
dT |W [U ], Q

[ V
W

]〉
(B28c)

=
〈
MdT |W [U ],

V

W

〉
. (B28d)

Note that M is linear, implying dM |p = M for every p ∈ SN . Since M restricted to
T = T (W) is the inverse of T , one ahs M ◦ T = idW . These two facts imply

M
[
dT |W [U ]

]
= dM |T (W )

[
dT |W [U ]

]
= d

(
M ◦ T

)
|W [U ] = d(idW)|W [U ] = U. (B29)
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Plugging this result back into (B28d) gives

(T ∗gSN
)
W
(U, V ) =

〈
U,

V

W

〉
= gWW (U, V ) (B30)

which shows the assertion.

B.2 Proof of Proposition 3.2

Proposition B.2 (Proposition 3.2 in the main text). For every W ∈ W, the distri-
bution T (W ) ∈ SN has maximum entropy among all p ∈ SN subject to the marginal
constraint Mp =W .

Proof. We use the concepts of m-flat and e-flat submanifolds of information geometry,
which justify applying the Pythagorean relation of information geometry. For details,
we refer to Amari and Nagaoka (2007). The feasible set of all distributions with the
prescribed marginals reads

{T (W ) + u : Mu = 0} ∩ SN (B31)

which is an m-flat submanifold of SN . In addition, Lemma 3.3 shows that T is an
e-flat submanifold of SN . Let p = T (W ) + u denote an arbitrary feasible point. By
(B31) and Lemma 3.4 we have

⟨u,QV ⟩ = ⟨Mu, V ⟩ = 0 (B32)

for all V ∈ Rn×c. Consider the m-geodesic connecting p with T (W ). It intersects T
at T (W ) and we find

⟨dT |W [V ], u⟩ = ⟨T (W ) ⋄Q
[ V
W

]
, u⟩T (W ) = ⟨Q

[ V
W

]
, u⟩ = ⟨ V

W
,Mu⟩ = 0 (B33)

by using Lemma A.4. With (B33), m-flatness of (B31) and e-flatness of T the pre-
requisites for the Pythagorean relation of information geometry (Amari and Nagaoka,
2007, Theorem 3.8) are met. Using the cross-entropy H(p, q) = −⟨p, log q⟩ as well as
the relative entropy KL(p, q) = ⟨p, log p

q ⟩ and barycenter 1SN
= 1

N 1, we find

H(T (W )) = H(T (W ),1SN
)−KL(T (W ),1SN

)

= logN −KL(T (W ),1SN
) (B34)

and consequently

H(p) = H(p,1SN
)−KL(p,1SN

) (B35)

= logN −KL(p,1SN
) (B36)

= H(T (W )) + KL(T (W ),1SN
)−KL(p,1SN

) (B37)

(∗)
= H(T (W )) + KL(T (W ),1SN

)−KL(p, T (W ))−KL(T (W ),1SN
) (B38)
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= H(T (W ))−KL(p, T (W )) (B39)

by the Pythagorean relation (∗). Therefore H(p) ≤ H(T (W )) with equality only for
p = T (W ) which shows the assertion.

B.3 Proof of Lemma 3.3

Lemma B.3 (Lifting Map Lemma). Let S ∈ W and V ∈ Rn×c. Then

T (expS(V )) = expT (S)(Q(V )). (B40)

Proof. We have T (exp(V )) = exp(Q(V )) (without subscripts, i.e. applying the
exponential function componentwise), because for any multi-index γ

exp(Q(V ))γ = exp
(
Q(V )γ

)
= exp

( ∑
i∈[n]

Vi,γi

)
(B41a)

=
∏
i∈[n]

exp
(
Vi,γi

)
=

∏
i∈[n]

(
exp(V )

)
i,γi

(B41b)

= T (exp(V ))γ . (B41c)

Let D ∈ Rn×n be a diagonal matrix with nonzero diagonal entries. Then T (DR) ∝
T (R) for any R ∈ Rn×c because

T (DR)γ =
∏
i∈[n]

(DR)i,γi
=

( ∏
i∈[n]

Dii

)( ∏
i∈[n]

Ri,γi

)
∝ T (R)γ . (B42)

It follows that

T (expS(V )) ∝ T (S ⋄ exp(V ))
(B41)
= T (S) ⋄ exp(Q(V )) ∝ expT (S)(Q(V )) (B43)

Because both the first and last term in (B43) are clearly elements of SN , i.e. strictly
positive vectors summing up ot 1, this implies the assertion.

B.4 Proof of Theorem 3.5

Theorem B.4 (Multi-Population Embedding Theorem). For any payoff func-
tion F : W → Rn×c, the multi-population replicator dynamics

Ẇ = RW [F (W )], W (0) =W0 (B44)

on W is pushed forward by T to the replicator dynamics

ṗ(t) = Rp(t)F̂ (p(t)), p(0) = T (W0), F̂ = Q ◦ F ◦M (B45)
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on SN and the map T satisfies

dT |W [RW [X]] = RT (W )Q[X], for all X ∈ Rn×c and W ∈ W. (B46)

Proof. We first show that, for any W ∈ W, the differential of T and the replicator
operator are related by (B46). Let γ ∈ [c]n be an arbitrary multi-index. Because of
RW [X] ∈ T0W, Lemma A.4 implies

dTγ |W [RW [X]] = Tγ(W )Qγ

[
RW [X]

W

]
= Tγ(W )

∑
i∈[n]

(RW [X])i,γi

Wi,γi

. (B47)

Due to (RW [X])i,γi
=Wi,γi

(Xi,γi
− ⟨Xi,Wi⟩), the sum can be written as

∑
i∈[n]

(RW [X])i,γi

Wi,γi

=
∑
i∈[n]

(
Xi,γi

− ⟨Xi,Wi⟩
)
= Qγ [X]− ⟨X,W ⟩. (B48)

Additionally using the relationW =M [T (W )] due to (B15), and applying Lemma 3.4
gives

⟨X,W ⟩ = ⟨X,M [T (W )]⟩ = ⟨Q[X], T (W )⟩. (B49)

Collecting all expressions, we have

dTγ |W [RW [X]] = Tγ(W )
(
Qγ [X]− ⟨Q[X], T (W )⟩

)
=

(
RT (W )Q[X]

)
γ

(B50)

which shows (B46). Now, denoting p = T (W ) ∈ SN we directly establish (B45)

ṗ = dT (W )[RW [(F ◦M)(p)]] = Rp[(Q ◦ F ◦M)(p)] = Rp[F̂ (p)]. (B51)
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