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Abstract

Moving object detection and segmentation from a single
moving camera is a challenging task, requiring an under-
standing of recognition, motion and 3D geometry. Combin-
ing both recognition and reconstruction boils down to a fu-
sion problem, where appearance and motion features need
to be combined for classification and segmentation.
In this paper, we present a novel fusion architecture for
monocular motion segmentation - M3Former, which lever-
ages the strong performance of transformers for segmenta-
tion and multi-modal fusion. As reconstructing motion from
monocular video is ill-posed, we systematically analyze dif-
ferent 2D and 3D motion representations for this problem
and their importance for segmentation performance. Fi-
nally, we analyze the effect of training data and show that
diverse datasets are required to achieve SotA performance
on Kitti and Davis. Code will be released upon publication.

1. Introduction
Interaction in a dynamic world requires reasoning about

your surroundings and other dynamic agents. Motion seg-
mentation plays a crucial part in autonomous perception
systems, as we need this information for higher-level plan-
ning and navigation. It has exciting applications in down-
stream tasks such as e.g. Neural Scene Synthesis [37] or
Simultaneous Localization and Mapping (SLAM) [82]. Hu-
mans and animals can effortlessly perceive even completely
unknown objects when observing them moving. This is in
stark contrast to common image detectors [13], which are
trained on large-scale datasets and are dependent on their
respective finite label spaces. Combining motion and ap-
pearance data can resolve this issue and create generic ob-
ject detectors, that generalize better across datasets [18, 44].
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Figure 1: Our Multi-Modal Mask2Former (M3Former)
framework for motion segmentation. Based on a monocu-
lar video, we compute a reconstruction based on frozen ex-
pert models [54, 56, 47]. This allows us to create (pseudo-)
multi-modal data. We perform motion segmentation as a
top-down fusion task with a segmentation transformer. We
experiment both with 2D and 3D motion as input to our
model.

These findings align with the two-stream hypothesis in
Neuroscience [23], which states that both appearance and
motion are vital to biological visual systems. Motion seg-
mentation can therefore be considered a multi-modal fu-
sion problem. In this paper, we present a novel two-stream
fusion architecture for motion segmentation. We combine
both appearance and motion features in a transformer archi-
tecture [13].

We call our framework Multi-Modal Mask2Former
(M3Former), since we combine information from multiple



modalities with masked attention. Since monocular video
provides only a single modality stream, we make use of
frozen expert models [47, 54, 56] for computing different
motion representations, see Figure 1. Our contributions are
fourfold:

• We design a novel two-stream architecture with En-
coder and Decoder. We analyze the performance of
different fusion strategies within this framework.

• We systematically analyze the effect of different
motion representations (Optical Flow, Scene Flow,
higher-dimensional embeddings) from previous work
within our framework.

• We empirically showcase the effect of diverse training
data. Balancing different sources of motion patterns
and semantic classes is crucial for strong performance
on real-life video.

• We introduce a very simple augmentation technique
for better multi-modal alignment. By introducing neg.
examples with no motion information, we force the
network to not over-rely on appearance data alone.

1.1. Problem Statement

Given a video {I1, I2, . . . , IN} from a single camera,
we want to detect and segment generic independently mov-
ing objects. An object is defined as a spatially connected
group of pixels, belonging to the same semantic class. All
labels are merged into a single “object”, since only the mo-
tion state matters. Detectors only see a finite number of
classes during training. Generic object detection assumes
an inbalance between the set of training and test class la-
bels. We want to identify any moving object, even if we
have never seen the class during training. An object is de-
fined as independently moving when its apparent motion is
not due to camera ego-motion. The object is still considered
moving when only a part is in motion, e.g. when a person
moves an arm, then the whole person should be segmented.

2. Related Work

Segmenting objects based on their motion is a long
standing problem in Computer Vision with a rich history
[17, 28, 58, 59, 60, 52, 61, 65, 72, 80, 9, 45, 5, 67] dating
back to the early 90’s.

Spatio-temporal Grouping and Geometric Model-
ing. Traditional approaches treat the problem as a spatio-
temporal grouping problem, where similar 3D motions are
clustered together [58, 52, 65, 64, 73, 9, 45, 21, 5, 62, 72].
However, they focus on theoretical analysis with perfect in-
put data, work on simplistic scenes and/or use sparse point
trajectories.

A dominant line of work focuses on segmentation from
two-frame optical flow, either by devising handcrafted ge-
ometric constraints [5, 57], e.g. motion angle and plane
plus parallax (P+P) [51], or by learning directly from mo-
tion data [6, 78, 35, 74, 69]. Such approaches are affected
by noisy inputs and cannot deal with degenerate cases like
coplanar-colinear motion [80] and camera motion degener-
acy [59]. Similar to us, [40] uses two RGB-D frames as
input data and use a CNN to separate static background and
dynamic foreground. However, they focus on high-quality
depth maps and model motion with 2D optical flow and
camera poses. In order to deal with all motion cases and
have a generic approach, [76] formulates extensive criteria
beyond 2D motion. This requires a depth prior [47] and ad-
ditional specialized neural network modules [75, 8]. Our
approach is indifferent towards geometric modeling: We
analyze the importance of motion models in Section 4 by
ablating different representations common in the literature.
We will later see, that the effect on the downstream segmen-
tation task is highly dependent on the datasets involved and
the underlying quality of the geometric model inputs. Inter-
estingly, weaknesses in geometric modelling can be com-
pensated with local and global image information very ef-
fectively.

Learning Video Object Segmentation. Object detec-
tion and segmentation from videos is closely related to
salient object detection. Existing methods rely either on
appearance features [29] or motion features from optical
flow [6, 35]. One line of research specializes on unsuper-
vised motion segmentation [39], mostly from optical flow
[6, 78, 35, 74, 69]. While this opens the avenue to train
on large unlabeled datasets, training from 2D optical flow
alone does not resolve degenerate motion cases. Other re-
cent work focuses on leveraging vision transformers for
generic object discovery [68, 3, 4, 53, 16, 20, 30, 53]. They
focus either on unsupervised motion segmentation, video
segmentation or generic object feature learning, where mo-
tion segmentation potentially acts as input [4]. Their train-
ing objectives are not aligned with the presented task defi-
nition of [18, 44], where incomplete motion patterns should
result in complete semantic object instances. Therefore,
we focus on supervised motion segmentation in this work.

Many older approaches have focused on a binary fore-
ground/background separation [57, 19, 40], which would
require additional post-processing in order to detect indi-
vidual objects. Another line of work utilizes binary motion
segmentation as an auxiliary task for monocular scene re-
construction [66, 67, 79, 49, 82, 37]. While this achieves
promising results, it showcases the chicken-and-egg nature
of the problem: In order to reconstruct video, we would
like to separate the scene into dynamic foreground and static
background beforehand. On the flipside, we need accurate
3D motion fields to infer this assignment in retrospective.

2
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Figure 2: The M3Former architecture. Using two multi-modal streams, we fuse separate image and motion features across
the streams. For each stream, we apply a backbone to learn multi-scale features z. We have two separate sets of query
embeddings, i.e motion and appearance. Both multi-scale features z and query embeddings q interact with each other through
the attention mechanism.

In this work, we use a generic top-down approach to learn
instance segmentation in an end-to-end manner similar to
[18, 76, 44]. Video Instances Segmentation (VIS) [77] is
a highly active research topic for video data [27]. While
[18, 68] extend their model to an online-tracker, we focus
on instance segmentation in this work. Extending motion
segmentation to VIS would be an exciting avenue for future
research.

Multi-modal Fusion. Advances in motion segmentation
are closely related to instance segmentation. Recent detec-
tors [13, 85, 31] achieve strong performance due to training
on large, standard datasets such as COCO [34] and leverag-
ing newer transformer architectures [12, 84, 13]. Pure im-
age based detectors are limited to a fixed number of object
labels in the training set. In the same manner, large amounts
of data would be needed in order to train a robust motion de-
tector based on image data alone. This can be alleviated by
leveraging inductive biases from explicit motion estimates.
Similar to [18, 68, 44] we aim to generalize to arbitrary ob-
ject categories by fusing both appearance and motion infor-
mation. Motion segmentation is therefore closely related to
multi-modal fusion. Since we only have monocular video
as input, we create non-rgb pseudo-modalities with off-the-
shelf expert networks for optical flow [54], depth [47] or
scene flow [56]. This approach shares similarities to multi-
modal vision expert models [36] or recent multi-modal seg-
mentation transformer [85, 31].

Prior work focused on fusion with CNN-architectures
[57, 19, 68, 18, 44]. Fusing with convolutional layers has
the downside that both modalities/features will influence
each other in a fixed manner. This inflexibility can worsen
performance when the information from one modality is
corrupted. Furthermore, switching between modalities or

extending the architecture from image data to video data
cannot be done in a CNN without retraining. We adress
these issues by using a transformer with a two-stream ar-
chitecture consisting of an appearance and motion branch.
Similar to [42, 83], we fuse features flexibly based on at-
tention [63]. However, instead of using a shared decoder
we fuse features at multiple locations in the network. Com-
pared to prior work, we further fuse multi-scale features in
order to achieve higher-resolution masks instead of single-
scale features. Finally, our work is also closely related to
[43], in the sense that we analyze the effect of different fu-
sion mechanisms on downstream task performance. How-
ever, instead of focusing on audio-visual classification, we
perform motion segmentation.

3. Our Approach
We introduce the M3Former architecture for this task as

is illustrated in Figure 2. The main idea of our approach is
to flexibly fuse multi-scale features from both appearance
and motion data with attention.

3.1. Motion Representations

While previous work has explored the use of optical flow
[18, 74, 69] and higher level rigid motion costs [76, 44], a
detailed comparison of different motion representations for
a single architecture has not been conducted. We progres-
sively explore segmentation performance depending on the
motion representation as input data. We analyze both the
performance of single-modality inference and fusion with
appearance features. Given two images I1, I2 ∈ RH×W×3,
we are interested in the motion F17→2 between both frames.

Optical Flow. Optical flow is a 2D translation field F ∈
RH×W×2. We use RAFT [54] in our work and take a robust
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version provided by [44].
Higher-dimensional Motion Costs. Optical flow is a

2D projection of the actual 3D motion. Multiple motions
can map to the same projection, therefore the reconstruc-
tion is ambiguous. Reconstructing object and camera mo-
tion from optical flow has multiple degenerate cases [76].
Degenerate cases appear commonly in applications, e.g. all
vehicles on a road drive colinear. In order to detect mov-
ing objects robustly, we need some form of 3D prior in-
depent from Structure-from-Motion. The authors of [76]
formulate four handcrafted criteria for computing a higher
dimensinal cost function C12 ∈ RH×W×14 between two
frames. This cost function has a higher cost in regions, that
violate the static scene assumption. Computation involves
estimating optical flow [54], optical expansion [75], cam-
era motion [24] and monocular depth [47]. The authors of
[44] extend this cost function to a three-frame formulation
C13 ∈ RH×W×28 by using backward F27→1 and forward
motion F27→3. The computation of this cost embedding in-
volves up to four neural networks, each trained on their own
specific datasets.

Scene Flow. There exists a simpler minimal formula-
tion - 3D scene flow. Given two RGBD frames {I1, Z1}
and {I2, Z2}, we compute motion as a field of rigid body
transformations F ∈ RH×W×6 ∈ SE3. RAFT-3D [56]
is the direct 3D equivalent of the 2D optical flow network
[54] and naturally includes a geometric optimization. The
main idea of this work is to compute a motion g ∈ SE3 for
each pixel without making any assumption about semantics.
Pixels naturally group together into semantically meaning-
ful objects due to moving with the same rigid body motion.
We spin this idea around - given multiple rigid body mo-
tions in a scene we want to infer an instance segmentation.
While there are many diverse datasets for optical flow train-
ing [1, 48, 10, 22], there are fewer datasets for scene flow
training [41]. We found, that existing model weights do not
transfer well to all of our training datasets. We therefore
finetune RAFT-3D for our training data, but use published
checkpoints [56] during the evaluation. Performance of 3D
motion estimation is largely dependent on the depth map
quality. Training is done mostly with high-quality or ground
truth depth. During inference on in-the-wild data, we do not
have access to accurate absolute scale monocular depth for
both Z1, Z2. We ablate the performance of motion estima-
tion and segmentation depending on the depth quality.

3.2. Fusion

Image based detectors can solve the segmentation and
detection task well, but perform poorly on motion classifi-
cation. Simply using monocular video data for motion seg-
mentation is a challenging task to learn with limited training
data. The task gets solvable when using motion as an in-
termediate data representation, which acts as inductive bi-

ases. However, in order to robustly segment semantically
meaningful moving objects, combining both image and mo-
tion data together is crucial. The motion segmentation task
therefore can be considered a multi-modal fusion problem.

Transformers are very flexible - Adapting a transformer
for example to Video Instance Segmentation only requires
a change in Positional Encoding and little finetuning [13].
This flexibility is a key advantage, since it leaves the possi-
bility open to use longer temporal windows in the future. In
a similar manner, we add a modality specific positional en-
coding and combine data from multiple modalities instead
of temporal frames. When using multiple modalities, we
combine features within a two-stream architecture with ded-
icated parameters Θrgb, Θmotion. Each branch is trained
on it’s own modality individually first and then fusion is
learned by finetuning both branches together. We experi-
ment with multiple methods for fusing information at dif-
ferent locations. We base our different streams on the SotA
segmentation architecture Mask2Former [14].

Multi-headed Attention. A transformer layer consists
of Multi-Headed Self-Attention (MSA) [63], Layer Nor-
malisation (LN) and Multilayer Perceptron (MLP) blocks,
applied using residual connections. Given input tokens zl

at layer l, we have

yl = MSA
(
LN

(
zl
))

+ zl (1)

zl+1 = MLP
(
LN

(
yl
))

+ yl . (2)

The MSA operation computes dot-product at-
tention [63], where query, key and values are
linear projections of the same input tensor:
MSA (X) = Attention

(
WQX, WKX, WV X

)
.

Multi-Headed Cross Attention (MCA) computes at-
tention between two input tensors X and Y, where
X acts as the query and Y as keys and values:
MCA (X, Y) = Attention

(
WQX, WKY, WV Y

)
.

Fusion in a vision transformer architecture is simple:
Given two separate token sequences zrgb and zmotion, we
can generate a longer sequence z = [zrgb||zmotion] by
concatenation. Running this longer sequence through the
transformer layer lets both modalities exchange informa-
tion. We have both self-attention and cross-attention layers
with a learned attention mask Ml−1 [15] in the decoder.
Since it is a query based detector, we not only have
high-resolution spatial input feature tokens z (see Figure
2), but also 256-dimensional object query embeddings q.
Masked cross-attention is computed between z and q, while
self-attention is performed only on q to learn global con-
text. We have two sets of object embeddings: appearance
qrgb and motion qmotion. We concatenate spatial features
[zrgb||zmotion], object query embeddings [qrgb||qmotion]
and the respective attention masks [Mrgb||Mmotion] as
can be seen in Figure 2 on the right. Attention can flow
freely through the network with the learned masks, i.e. all
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Figure 3: Alignment from regularization: We force the
model to not overrely on appearance data by introducing
neg. examples.

important image tokens can interact with motion tokens
and all queries. A final prediction is made by combining
individual outputs with a single convolutional layer.

Attention Bottlenecks. Pairwise attention has quadratic
complexity, which can be critical. In order to tame this com-
plexity, the authors of [43] proposed fusion bottleneck to-
kens. We found that in practice memory only becomes a
problem when using many queries. In the same manner, we
experimented with bottleneck object embeddings qmbt and
let both branches interact only through these bottlenecks.

Deformable Attention. The encoder of the Mask2-
Former architecture uses multi-scale deformable attention
[84]. This is a mechanism for sampling only few interest-
ing spatial locations from input features maps. The pairwise
attention is thus limited to a reduced set and has linear com-
plexity w.r.t the spatial input size. For fusion, we can simply
concatenate both feature maps along the x-axis, such that
f = [frgb, fmotion] since both input modalities share the
same spatial dimensions. When fusing at the encoder level,
we perform this operation on each scale of the feature pyra-
mid and add a modality specific positional encoding similar
to [13].

Multi-modal Alignment. Alignment between modali-
ties is a vast and important topic in multi-modal models, we
refer the reader to [2] for a more extensive overview. Both
modalities might not contain the same amount of informa-
tion and models need to be able to flexibly decide which
data source to trust. In our case motion maps might be noisy
and the model needs to figure out to rely on the

FT3D Monkaa Driving Vkitti Kitti Davis YTVOS
Mix 0 ✓ ✗ ✗ ✗ ✗ ✗ ✗
Mix 1 [76, 44] ✓ ✓ ✓ ✗ ✗ ✗ ✗
Mix 2 ✓ ✗ ✗ ✓ ✗ ✓ ✗
Mix 3 ✓ ✓ ✓ ✓ ✓ ✓ ✗

Mix 4 [18] ✓ ✗ ✗ ✗ ✗ ✓ ✓

Table 2: We experiment with different dataset mixes. Col-
ored datasets are used for evaluation. Single-modality mod-
els are trained on Mix 0, Fusion models on Mix 1 -3. Mix
1 is a common setting proposed by [76, 44] to test gener-
alization. Because this setting lacks diversity in semantic
classes and motion patterns, we propose more appropriate
mixes that resolve common failure cases.

appearance information for high segmentation quality.
At the same time datasets [33] exist, where motion can act
as a stronger cue for discovering moving objects.

We notice in our experiments in Section 4, that models
usually overrely on appearance data for motion segmenta-
tion and thus introduce many false positives. This issue is
especially present for ill-posed 2D motion representations.
We thus propose a very simple augmentation strategy as can
be seen in Figure 3: With a given probability pneg , we in-
troduce negative examples, where motion data is augmented
to a random constant flow field within value range. With-
out any variation in the motion data, models should place
semantic objects from the appearance stream into the back-
ground. We experiment with multiple values for pneg .

4. Experiments

In our experiments we want to answer the following re-
search questions:

What motion representation is most useful for motion
segmentation? How important is fusion with appear-
ance data?

We use a vanilla Mask2Former [14] model for single-
modality training. All experiments are done with a
ResNet50 [26] backbone, so that we are comparable to re-
lated approaches. Scaling the network is not focus of this
paper, but would be a promising direction for future work.

Dataset Groundtruth data Diversity Motion Diversity Classes non-rigid motion degenerate cases #Train #Test
FlyingTings3D Depth, 2D/3D Motion, Odometry High High ✗ ✗ 40 100 7800
Monkaa Depth, 2D/3D Motion, Odometry Medium Medium (✓) ✗ 23 356 2588
Driving Depth, 2D/3D Motion, Odometry Low Low ✗ ✓ 9954 1106
Davis - Medium High ✓ ✗ 2232 1620
Kitti Lidar, 2D/3D Motion, Odometry Low Low ✗ ✓ 180 20
Virtual Kitti Depth, 2D/3D Motion, Odometry Low Low ✗ ✓ 29 811 3314

Table 1: Motion segmentation datasets. Available datasets have different motion patterns and moving semantic classes.
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4.1. Datasets

The authors of [18, 76, 44] have made the effort to cre-
ate motion labels on multiple datasets. Table 1 shows used
motion segmentation datasets and their characteristics. We
use common datasets: Sceneflow [41], KITTI [22], Virtual
Kitti [11] and Davis [46]. Scenes range from autonomous
driving, random synthetic scenes to real world casual videos
with humans and animals. Table 2 shows different training
data mixes from the literature and our experiments. Related
work [76, 44] train their fusion models solely on the Scene-
Flow datasets and evaluate generalization on Davis, Kitti
and YTVOS [71]. We drop YTVOS, because performance
heavily correlates to Davis. We keep this training setting for
our fusion experiments. Single-modality motion segmen-
tors are trained on FlyingThings3D. We note how common
failure cases result due to a lack of diverse training data.
Mix 1 does not contain many degenerate motion patterns
and non-rigid moving objects. We therefore progressively
diverge from this setting and analyze the effect of data on
performance in Section 4.4. We balance individual datasets,
such that samples are drawn with approx. equal likelihood
during training, i.e. we use a naive sampling strategy. We
believe this to be a step in the right direction, as large scale
training is necessary for true real-world generalization abil-
ities.

Metrics. We report standard instance segmentation
COCO metrics such as mAP , AP50. We further include
other segmentation metrics, such as Precision (Pu), Recall
(Ru) and F-score (Fu) [18], foreground precision [76] and
the number of false positives and false negatives over the
whole split [44]. Since datasets come in different sizes,
we normalize the number of false positives/negatives. In
our ablations, we mainly focus on mAP , FP and FN , be-
cause they act as a good proxy. More details can be found
in Suppl. Sec. 7.2.

4.2. Modalities for Motion Segmentation

In our first experiments, we focus on single modalities.
We train for 30 epochs, for more details see Suppl. Sec.

Modality AP AP50 AP75

RGB 56.53 76.71 57.5

Scene Flow† 75.19 89.52 77.03
Optical Flow† 72.24 87.43 74.52
Scene Flow [56] 55.39 75.31 56.26
Motion embedding [44] 53.30 75.20 54.9
Optical Flow [54] 52.45 72.75 52.73

Table 3: Comparison of different input data for motion seg-
mentation on FlyingThings3D. † denotes ground truth data.

7.1. Table 3 shows the results on the test split of Fly-
ingThings3D. We achieve best results with 3D input data,
which suggests that 3D motion makes the task easier for
the network to learn and generally outperforms 2D motion.
The gap between predicted and groundtruth motion leaves
room for improvement for off-the-shelf estimators. Inter-
estingly, we include a pure image baseline model. We can
train a strong image detector on this dataset, because fore-
ground objects are consistently in motion and distinct from
the background. Note how this would not be the case if the
data contained object classes, which can move but don’t.
We will later see, how pure image baselines only perform
favorably on metrics which do not punish false positives.

4.3. Why One Modality Is Not Enough

When generalizing to real-world data with a very dif-
ferent distribution of objects and motion patterns, single-
modality models will perform much worse as can be seen
in Table 4. For our pure image baseline, we use the COCO
[34] pretrained model from [14]. In order to create a
stronger baseline, we only use classes, which can move on
their own or are likely to be in motion, e.g. cars or per-
sons (see more information in Suppl. Sec. 7.2). 3D mo-
tion requires 3D geometry. Monocular depth prediction in
dynamic environments is an open problem [32, 81] and is
challenging on in-the-wild data. During training we used
perfect ground truth depths for computing the scene flow.
On in-the-wild data this will not be the case. We ablate mul-
tiple scenarios for depth prediction quality. For autonomous
driving data we compare the performance for rel. monoc-
ular depth, abs. monocular depth and stereo depth. For
monocular depth prediction we take DPT [47] and Uni-
Match [70] for stereo as two SotA single-timeframe mod-
els. We compute the abs. depth of each frame by aligning it
with the groundtruth as [76]. Alignment is not possible on
casual video clips like DAVIS without a reference. The re-
construction of casual videos is still an open research prob-
lem in itself [37]. However, we propose a simple strategy
for depth alignment based on an end-to-end SLAM system

Kitti Davis
Modality AP50 ↑ FP ↓ FN ↓ AP50 ↑ FP ↓ FN ↓
RGB (Coco) 58.2 1.34 0.17 50.51 0.92 0.07
Optical Flow [54] 25.1 0.99 0.43 30.2 0.63 0.13

rel. scale
Scene Flow [56] 29.6 0.54 0.42 11.0 0.24 0.22

abs. scale
Scene Flow [56] 36.8 0.50 0.40 39.84 0.41 0.14

stereo
Scene Flow [56] 44.4 0.10 0.40 - - -

embedding [44]
Motion 28.9 0.59 0.43 33.9 0.57 0.13

Table 4: Zero-shot performance of single-modality models
on KITTI and Davis. Results in grey are only for few se-
lected videos, where a reconstruction with SfM is possible.
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Kitti Davis
pneg AP50 ↑ FP ↓ FN ↓ AP50 ↑ FP ↓ FN ↓

0 15.55 14.42 107.8 19.846 897.90 263.85
30 37.16 23.38 83.19 23.98 616.53 258.81

Table 5: Ablation of neg. examples augmentation (FP and
FN are not normalized). Experiments were run on Mix 1
with image and optical flow data.

[55]. This reconstruction is only possible on few selected
video clips, but acts as a proof-of-concept. More informa-
tion can be found in Suppl. Sec. 7.4.

Motion Data Is Not Equally Useful. It can be seen in
Table 4, that motion representations can provide different
value depending on the dataset. While optical flow is a
generic motion representation, which can be inferred reli-
ably on most datasets, 3D scene flow is heavily dependent
on the depth quality. The motion embeddings from [44] of-
fer a great trade-off since they do not require multiple scale-
correct depth maps, but still contain 3D costs. Once depth
is reliably provided, high quality scene flow gives the best
results as can be seen on Kitti. However, there remains a
large gap in mAP to the image baseline. Reasons for this
gap are multiplefold: i) Davis contains many non-rigid mo-
tion patterns. Since this has not been in the training data,
the model did not learn to group motions and oversegments
the scene. ii) 3D geometry cannot be reliably reconstructed,
therefore 3D motion is very noisy. iii) Kitti has fast camera
motion and many objects move colinear to it. At the same
time most scenes contain both static and moving objects of
the same class, which is in contrast to training data. Thus,
Optical Flow based detectors have many false positives. 3D
motion based detectors are dependent on the depth quality.
iv) Often multiple objects share the same forward motion,
therefore they are grouped together and the scene is under-
segmented. These cases are not present in dataset mix 0 and
1. On the other hand, a pure image detector will detect any
semantic object and introduce many false positives.

4.4. Fusion Between Appearance and Motion Data

In order to create robust motion segmentation, we re-
solve the before mentioned problems by fusing appearance
and motion information. Since we want to retain semantic
object knowledge of an image detector, we freeze the im-
age branch that is pretrained on COCO similar to previous
work [18, 44]. We take the pretrained motion branches on
FT3D and finetune a fusion model on the respective data
mix. Training and implementation details can be found in
Supp. Sec 7.1. Alignment between appearance and mo-
tion features is very important. The model should not rely
too much on appearance to overrule the classification from
motion. In Table 5 we show the effect of introducing neg.
examples. As can be seen, this simple augmentation can

Kitti Davis
Data Modality mechanism

Fusion AP50 ↑ FP ↓ FN ↓ AP50 ↑ FP ↓ FN ↓
D 37.16 0.12 0.41 23.98 0.39 0.16RGB + OF E+D 39.65 0.15 0.40 35.88 0.29 0.15
D 27.5 0.05 0.50 19.25 0.30 0.19RGB + SF E+D 26.5 0.10 0.49 15.4 0.11 0.23
D 27.6 0.05 0.50 21.8 0.38 0.14RGB + SF* E+D 37.8 0.33 0.38 38.4 0.13 0.17
D 27.6 0.05 0.50 - - -RGB + SF** E+D 51.0 0.10 0.35 - - -
D 29.51 0.06 0.47 27.47 0.30 0.17

Mix 1

RGB + Cost E+D 47.9 0.22 0.35 33.27 0.49 0.14

RGB + OF D 70.82 0.32 0.16 54.01 0.13 0.01
E+D 60.88 0.29 0.24 61.12 0.11 0.12

D 72.07 0.31 0.16 58.76 0.11 0.13RGB + SF E+D 56.3 0.38 0.27 53.9 0.08 0.15
D 68.46 0.26 0.21 58.40 0.09 0.13

Mix 3

RGB + Cost E+D 65.12 0.22 0.23 64.10 0.11 0.12

Table 6: Fusion of appearance with different modalities. *
denotes abs. scale depth ** denotes stereo depth

stop the model to rely too much on appearance data and
reduces false positives (we show the total number of false
positives/negatives over the whole split). On Kitti the num-
ber of false positives is harder to reduce, because both pos-
itive and negative examples of moving objects are hidden
inside a flow field with large variance due to the fast driving
motion. We keep 30% neg. examples as augmentation in
future experiments. When scaling up to larger dataset mix
3, we set pneg = 5% in order to reduce training time as a
trade-off.

We can choose multiple fusion strategies in our two-
stream architecture: i) deformable Attention in Encoder (E).
ii) Vanilla attention in Decoder (D). iii) Multi-modal Bot-
tleneck Tokens (MBT) [43] in Decoder. iv) Fusion in both
Encoder and Decoder (E+D). We ablate these strategies in
Table 11 in Suppl. Sec. 8.1. We found, that there is no
optimal strategy for all motion representations and training
data. We observed, that the training dynamics are affected
by the fusion mechanism and hypothesize, that the strate-
gies can potentially converge to similar results when given
enough training time. Finally, there is no optimal strategy
for both Kitti and Davis. We therefore opted for the sim-
ple late fusion in the decoder or fusion in both encoder and
decoder for later experiments. Our results in Table 6 show,
that motion cues generally reduce false positives and the fu-
sion with appearance data closes the gap in precision. 3D
motion representations can give stronger performance when
they are available in high quality.

Beyond Small-scale Datasets. Our previous experi-
ments have shown that a simple detector baseline is hard to
beat for segmentation precision. While image data is very
valuable for precision, motion data helps in reducing false
positive detections as can be seen in Table 4. Motion and
Fusion models over- or undersegment the scene due to a
lack of diverse training data. As can be seen in Table 7 we
could not replicate the performance of [44] with the training
setting of Mix 1 [44, 76]. Mix 1 does neither contain real
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Kitti Davis

Method data
Training

AP ↑ bg obj Pu Ru Fu FP ↓ FN ↓ AP ↑ bg obj Pu Ru Fu FP ↓ FN ↓

RGB sem. baseline [13] COCO 42.2 96.6 69.25 60.70 93.96 69.25 1.34 0.17 35.05 0.92 0.68 0.61 0.88 0.68 0.92 0.07
Learning rigid motions [76] * Mix 1 20.0 - - - - - - - 4.2 - - - - - - -
Generic MoSeg[18] Mix 4 20.0 - - - - - - - 20.8 - - - - - - -
Raptor [44] Mix 1 40.07 98.97 86.3 89.37 86.3 86.3 0.11 0.35 40.9 94.20 73.3 71.57 80.20 73.3 0.25 0.10
Ours RGB + OF 25.67 98.46 76.63 81.12 76.70 76.63 0.15 0.40 19.28 95.34 64.85 67.32 67.82 64.85 0.29 0.15
Ours RGB + SF* Mix 1 26.70 96.65 64.13 62.71 77.08 64.13 0.33 0.38 15.20 96.50 69.45 71.07 69.70 69.45 0.13 0.17
Ours RGB + Cost [44] 32.40 98.65 79.39 78.47 84.87 79.39 0.22 0.35 16.85 93.70 59.78 62.39 64.67 59.78 0.50 0.14
Ours RGB + OF Mix 2 40.08 97.83 66.84 74.59 68.10 66.84 0.13 0.35 43.52 92.97 76.72 76.62 83.48 76.72 0.25 0.09
Ours RGB + OF Mix 3 50.91 99.19 85.99 83.26 91.30 85.99 0.32 0.16 32.25 94.53 73.73 73.12 77.23 73.73 0.12 0.01
Ours RGB + SF Mix 3 52.27 98.89 87.05 84.18 93.99 87.05 0.31 0.16 37.07 95.17 76.21 77.24 77.70 76.21 0.11 0.13
Ours RGB + Cost [44] Mix 3 48.44 98.76 82.33 80.84 88.13 82.33 0.26 0.21 35.11 95.13 75.87 75.58 78.51 75.87 0.09 0.13

Table 7: SotA Motion Segmentation on Kitti and Davis. We report our best results for the respective modality and data.
Results in grey are on scenes, where a reconstruction with SfM is possible. *use of abs. scale information
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Figure 4: Qualitative comparison on Kitti and Davis.

data with non-rigid motions nor realistic driving scenes with
many traffic participants. Since a variety of datasets exists,
we can fix this problem by training on more diverse data.
We combine sources from up to six datasets in our training.
Our new mixes 2 and 3 offer multiple cases of non-rigid mo-
tions, multiple objects moving in union and hard degenerate
motion scenarios. See Figure 7 in Appendix for examples
of how different training data can improve previous failures.
It can be seen in Table 11 and 6, how both training data and
different modalities affect performance. We observe that
depending on the training data, performance of M3Former
improves drastically (see Figure 8 in Suppl. Sec. 9.2).

Table 7 shows the SotA in supervised motion segmenta-
tion on Kitti and Davis. We visualize examples of the test
splits in Figure 4. Note how for Mix 3 results, the mod-
els still have never seen the evaluation data. Our results
are not necessarily surprising, as we partially trained on the
target domain. However, we find that our incremental im-
provements behave quite causal: Most failure modes of the
model disappear when supervised properly. Previous short-

comings can be resolved solely with better datasets instead
of architectural changes. Our proposed model architecture
is simple and flexible. Surprisingly, our results show that
even by using 2D optical flow, we can reach SotA perfor-
mance on Kitti without using any real driving data. It can
be seen that a minimal 3D motion representation like scene
flow can be effective even with noisy data. Models can
pick up strong cues for moving objects even from context
alone. For example, a car that is placed on a driving lane
is likely in motion compared to one parked to the side. In-
terestingly, creating a balanced dataset is a new optimiza-
tion problem in itself [47]. We observe, that adding just
more data sources can detoriate performance on Davis. De-
pending on the downstream-application, the data needs to
be correctly balanced. We leave this for future work.

5. Conclusion

We systematically analyzed the motion segmentation
problem from monocular video. In our experiments we
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identified the importance of different 2D and 3D motion
representations on multiple datasets. We proposed a novel
transformer fusion architecture M3Former which fuses ap-
pearance and motion information on multiple scales. We
analyzed multiple fusion schemes within this framework.
Our approach achieves SotA performance by leveraging
the flexible attention mechanism and diverse training data.
Our findings showed that both 2D and 3D motion can give
strong performance when trained on appropriate data. Since
appearance data mostly drives segmentation, the impor-
tance of high-quality motion estimates gets weaker when
scaling the data size.
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[44] Michal Neoral, Jan Šochman, and Jirı́ Matas. Monocular
arbitrary moving object discovery and segmentation. 2021.
1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 18, 19

[45] Peter Ochs, Jitendra Malik, and Thomas Brox. Segmenta-
tion of moving objects by long term video analysis. IEEE
transactions on pattern analysis and machine intelligence,
36(6):1187–1200, 2013. 2

[46] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
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