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Abstract
Metric data labeling refers to the task of assigning one of multiple predefined labels to
every given datapoint based on themetric distance between label and data. This assign-
ment of labels typically takes place in a spatial or spatio-temporal context. Assignment
flows are a class of dynamical models for metric data labeling that evolve on a basic
statistical manifold, the so called assignment manifold, governed by a system of cou-
pled replicator equations. In this paper we generalize the result of a recent paper for
uncoupled replicator equations and adopting the viewpoint of geometric mechanics,
relate assignment flows to critical points of an action functional via the associated
Euler–Lagrange equation. We also show that not every assignment flow is a critical
point and characterize precisely the class of coupled replicator equations fulfilling this
relation, a condition that has been missing in recent related work. Finally, some con-
sequences of this connection to Lagrangian mechanics are investigated including the
fact that assignment flows are, up to initial conditions of measure zero, reparametrized
geodesics of the so-called Jacobi metric.
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1 Introduction

1.1 Overview, motivation

Semantic image segmentation, a.k.a. image labeling, denotes the problem to partition
an image into meaningful parts. Applications are abound and include interpretation of
traffic scenes by computer vision systems,medical image analysis, remote sensing, etc.
The state of the art is based on deep networks that were trained on very large data sets.
A recent survey [1] reviews a vast number of different deep network architectures and
their empirical performance on various benchmark data sets. Among the challenges
discussed in [1, Sec. 6.3], the authors write: “... a concrete study of the underlying
behavior/dynamics of thesemodels is lacking.Abetter understanding of the theoretical
aspects of these models can enable the development of better models curated toward
various segmentation scenarios.”

In [2], a class of dynamical systems for image labeling, called assignment flows, was
introduced in order to contribute to the mathematics of deep networks and learning.
We refer to Sect. 3 for a precise definition and to [3] for a review of recent related
work. Assignment flows correspond to solutions W (t) of a high-dimensional system
of coupled ordinary differential equations (ODEs) of the form

Ẇ (t) = RW (t)[F
(
W (t)

)], (1)
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that evolve on the so-called assignment manifold W . Each ODE of this system is a
replicator equation [4, 5]

Ẇi = RWi Fi (W ), Ẇi j = Wi j

(
Fi j (W ) −

n∑

l=1

Wil Fil(W )

)
, i ∈ [m], j ∈ [n],

(2)
whose solution Wi (t) ∈ S := rint�n−1 ⊂ Rn+ evolves on the relative interior of the
probability simplex that is equipped with the Fisher–Rao metric g [6] and is labeled
by a vertex i ∈ V of an underlying graph G = (V, E). The assignment manifold
W = S × · · · × S is the product of the Riemannian manifolds (S, g) with respect to
all vertices i ∈ V .

The essential component of the vector field of (2) are a collection ofaffinity functions
Fi j : W → R that measure the affinity (fitness, etc.) of the classes (types, species,
etc.) j ∈ [n]. The differences of these affinity values to their expected (or average)
value on the right-hand side of (2), together with the multiplication byWi j , define the
replicator equation. For suitably defined affinity functions, the solution of this equation
is supposed to perform a selection of some class j : Wi (t) converges for t → ∞ to a
vertex of e j ∈ �n−1 and in this sense encodes the decision to assign the class label
j to the vertex i ∈ V and to any data indexed by i , like e.g. the color value in some
image, see Sect. 3.2 for more details.

The basic idea underlying the assignment flow approach (1) is to assign a replicator
equations to each vertex of an underlying graph and to couple them through smooth
nonlinear interactions of the assignment vectors {Wk : k ∈ Ni ⊂ V} within neighbor-
hoodsNi around each vertex i ∈ V . This is why the argument of Fi in (2) is W rather
than Wi . As a consequence, dynamic label assignments are performed by solving (1)
at each vertex i depending on the context in terms of all other decisions. The fact that
W (t) assigns class labels at each vertex when t → ∞ is not clear a priori but depends
on F . We refer to [7] for the study of a basic instance of F and sufficient conditions
that ensure unique labeling decisions.

The connection to deep networks results from approximating the flow by geometric
integration. The simplest such scheme among a range of proper schemes [8], the
geometric Euler schemewith discrete time index t and step size h(t), yields the iterative
update rule

W (t+1)
i = Exp

W (t)
i

◦R
W (t)

i

(
h(t)Fi (W

(t))
)

, i ∈ V, (3)

where Exp : TW → W denotes the exponential map of the so-called e-connection
of information geometry [6, 9]. The key observation to be made here is that for the
choice of a linear affinity map F , see Sect. 4.2, the right-hand side of (3) involves the
two essential ingredients of most deep network architectures:

1. A linear operation at each vertex of the underlying graph parametrized by network
parameters, here given as part of the definition of the linear affinity map F .

2. A pointwise smooth nonlinearity, here given by the exponential and replicatormaps
ExpWi

◦RWi .

Related Work. The connection between general continuous-time ODEs and deep
networks has been picked out as a central themby [10, 11] and classifies the assignment
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flowas aparticular ‘NeuralODE’.The above-mentioned limitedunderstandingofwhat
deep networks really do underlines the importance of characterizing and understanding
the dynamics (1) of assignment flows.

Concerning the geometry of the probability simplex, information geometry and
relations to the general concepts of Lagrangian andHamiltonian geometricmechanics,
we refer to the recent general survey [12]. Further papers devoted to this connection,
from the viewpoint of regular exponential families of distributions, include [13, 14].
Our paper also relies on the established concepts of geometric mechanics [15] and
information geometry [6, 9] and focuses on two specific aspects: (i) the assignment
flow system (1) which couples equations of the form (2) through an affinity function F
and, (ii) the specification a class of affinity functions F which enables to characterize
any solution to (1) as critical point of a novel action functional (Theorem 3.3).

Remark 1.1 In general, numerical integration schemes on manifolds involving expo-
nential maps can be challenging to compute. However, in the present case of the
e-connection on simplices, an explicit expression for the corresponding exponential
map in the geometric Euler scheme (3) exists, see [9, Proposition 2.4, p. 43f]. A sim-
plified formula of the right-hand side expression in (3) is given as Equation (129)
below.

1.2 Contribution, organization

The aim of this paper is to exhibit a special Lagrangian L : TW → R of the form
kinetic minus potential energy, with a specific choice for the potential energy, and
to characterize solutions W (t) to (1) as stationary points of the corresponding action
functional

L(W ) =
∫ t

0
L(W , Ẇ )dt . (4)

Our result generalizes the result of a recent paper [16], where an action functional
was introduced for the evolution p(t) of a single discrete probability vector on the
corresponding probability simplex. By contrast, equation (1) couples the evolution
of a (typically large) number of assignment vectors across the underlying graph. In
particular, we characterize precisely the admissible class of affinity functions F that
establishes the connection between (4) and the corresponding Euler–Lagrange equa-
tion, a condition that is missing in [16], see also Sect. 4.4. Furthermore, using the
Legendre transform, we compute an explicit expression of the Hamiltonian system
associated to (4) in the form of the equivalent Lagrangian system on TW . Finally, we
show that except for starting points in a specific set of measure zero, the set of Mañé
critical points, solutions of the assignment flow are reparametrized geodesics of the
so called Jacobi metric.

This paper considerably elaborates the conference version [17]
The paper is organized as follows. Section2 collects basic notions of geometric

mechanics that are required in the remainder of the paper. The assignment flow and
our novel results are presented in Sect. 3, followed by a discussion in Sect. 4. We
conclude in Sect. 5.
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1.3 Basic notation

In accordance with the standard notation in differential geometry, coordinates of vec-
tors have upper indices. For any k ∈ N, we set [k] := {1, . . . , k} ⊂ N. The standard
basis of Rd is denoted by {e1, . . . , ed} and we set 1d := (1, . . . , 1)� ∈ Rd .

Depending on the arguments, 〈a, b〉 denotes the Euclidean inner product of vectors
or the inner product 〈A, B〉 = tr(A�B) of matrices inducing the Frobenius norm
‖A‖F = 〈A, A〉1/2. The identity matrix is denoted by Id ∈ Rd×d and the i-th row
vector of any matrix A by Ai .

The linear dependence of a mapping F on its argument x is indicated by square
brackets F[x], if F is just a matrix we simply write Fx . The adjoint of a linear
operator F : Rm×n → Rm×n with respect to the standard matrix inner product on
Rm×n is denoted by F∗ and fulfills

〈F∗[A], B〉 = 〈A, F[B]〉, for all A, B ∈ Rm×n (5)

Inequalities between vectors or matrices are to be understood componentwise. For
a, b ∈ Rd , we denote componentwise multiplication (Hadamard product) by

a � b := (a1b1, . . . , adbd)� (6)

and, if all components of b are nonzero, componentwise division by a
b =

( a
1

b1
, . . . , ad

bd
)�. We further set

a�k := a�(k−1) � a and a�0 := 1d . (7)

Finally, if p ∈ Rd is a probability vector, i.e. p ≥ 0 and 〈p,1d〉 = 1, then the expected
value and variance of a vector a ∈ Rd (interpreted as a random variable a : [d] → R)
is

Ep[a] = 〈p, a〉 and Var p(a) = Ep[a2] − (Ep[a])2 = 〈p, a�2〉 − 〈p, a〉2. (8)

2 Elements from geometric mechanics

In this section, we collect some basic notions of geometric mechanics from [15, Ch. 3]
that are required in subsequent sections.

2.1 Hamiltonian systems

Let (N , ω) be a symplecticmanifoldwith the symplectic two-formω, and let H : N →
R be a smooth function, called the Hamiltonian. The Hamiltonian vector field XH

corresponding to H is defined as symplectic gradient by

dH |x [v] = ωx (XH (x), v), for all x ∈ N , v ∈ Tx N . (9)
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The triplet (N , ω, XH ) is called a Hamiltonian system. By [15, Prop. 3.3.2], a curve
γ (t) is an integral curve of XH , i.e.

˙γ (t) = XH (γ (t)), (10)

if and only if in Darboux coordinates (q1, . . . , qn, p1, . . . , pn) forω, theHamiltonian
equations hold for the curve γ (t) = (q(t), p(t)),

q̇i (t) = ∂H

∂ pi
(q(t), p(t)) and ṗi = −∂H

∂qi
(q(t), p(t)), for all i ∈ [n]. (11)

The value of the Hamiltonian H(γ (t)) (also called energy) is constant along integral
curves of XH .

For any smooth manifold M , the cotangent bundle (T ∗M, ωcan) is a basic instance
of the above situation, with the canonical symplectic form ωcan. Thus any smooth
function H : T ∗M → R gives rise to a Hamiltonian system, where T ∗M is interpreted
as momentum phase space and H represents an energy.

2.2 Lagrangian systems

Suppose M is a smooth manifold. Similar to Hamiltonian systems on momentum
phase space T ∗M , there is a related concept on the tangent bundle T M , interpreted
as velocity phase space. In this context, a smooth function L : T M → R is called
Lagrangian. For a given point x ∈ M , denote the restriction of L to the fiber TxM by
Lx := L|Tx M : TxM → R. The fiber derivative of L is defined as

FL : T M → T ∗M, (x, v) �→ FL(x, v) := (x, dLx |v), (12)

where dLx |v : TxM → R is the differential of Lx at v ∈ TxM . The function L is called
a regular Lagrangian if FL is regular at all points (i.e. FL is a submersion), which
is equivalent to FL : T M → T ∗M being a local diffeomorphism [15, Prop. 3.5.9].
Furthermore, L is called hyperregular Lagrangian if FL : T M → T ∗M is a diffeo-
morphism. A class of hyperregular Lagrangians that will be relevant in Sect. 3, is given
as Eq. (22) below.

The Lagrangian two-form ωL is defined as the pullback of the canonical symplectic
form ωcan on the cotangent bundle T ∗M under the fiber derivative FL

ωL := (FL)∗ωcan. (13)

According to [15, Prop. 3.5.9], ωL is a symplectic form on T M if and only if L is
a regular Lagrangian. In the following, we only consider regular Lagrangians. The
action associated to a Lagrangian L : T M → R is defined by

A : T M → R, (x, v) �→ FL(x, v)[v] = dLx |v[v], (14)
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and the energy function by E := A − L , that is

E : T M → R, (x, v) �→ FL(x, v)[v] − L(x, v) = dLx |v[v] − L(x, v). (15)

The Lagrangian vector field for L is the unique vector field XE on T M satisfying

dE |x [v] = ωL,x (XE , v) for all x ∈ M, v ∈ TxM . (16)

Since we assume L to be regular, XE is nothing else than the symplectic gradient of
L with respect to ωL . A curve γ (t) = (x(t), v(t)) on T M is an integral curve of XE ,
i.e.

γ̇ (t) = XE (γ (t)), (17)

if v(t) = ẋ(t) and the classical Euler–Lagrange equations in local coordinates

d

dt

(
∂L

∂ ẋ i
(
x(t), ẋ(t)

)) = ∂L

∂xi
(
x(t), ẋ(t)

)
for all i ∈ [n] (18)

are satisfied. Let γ : I → T M be any integral curve of XE . Then

d
dt E(γ ) = 0, (19)

that is the energy E is constant along γ , analogous to the constancy of the Hamiltonian
H due to (9). The subsequent Sect. 2.3 makes this connection explicit.

2.3 The Legendre transform

Let L : T M → R be a hyperregular Lagrangian, i.e. the fiber derivative FL : T M →
T ∗M is a diffeomorphism. Then the Lagrangian system on T M and the Hamiltonian
system on T ∗M are related to each other by the Legendre transformation, with the
Hamiltonian H : T ∗M → R corresponding to the energy E via

H = E ◦ (FL)−1. (20)

Accordingly, the Hamiltonian vector field XH on T ∗M and the Lagrangian vector
field XE on T M are FL related [15, Thm. 3.6.2], that is

XH = (FL)∗XE , (21)

and thus integral curves of XE are mapped to integral curves of XH and vice versa.
Furthermore, the base integral curves of XE and XH coincide.

Therefore, as a consequence of (20) and for a hyperregular Lagrangian L , the energy
E is just another representation of the corresponding Hamiltonian H .
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2.4 Mechanics on Riemannianmanifolds

Let (M, h) be a Riemannian manifold. Suppose a smooth functionG : M → R, called
potential, is given and consider the Lagrangian

L(x, v) = 1
2‖v‖2h − G(x), (x, v) ∈ T M . (22)

It then follows (see [15, Sec. 3.7] or by direct computation) that the fiber derivative of
L is the canonical isomorphism

FL = h� : T M → T ∗M . (23)

Hence the Lagrangian L is hyperregular with action A and energy E = A − L given
by

A(x, v) = ‖v‖2h and E(x, v) = 1
2‖v‖2h + G(x) for all (x, v) ∈ T M . (24)

Proposition 2.1 [15, Prop. 3.7.4]Let (M, h)beaRiemannianmanifold,π : T M → M
the natural projection and L : T M → R the Lagrangian defined by (22). Then the
curveγ : I → T M withγ (t) = (x(t), v(t)) is an integral curve of theLagrangian vec-
tor field XE , i.e. satisfies the Euler–Lagrange equation, if and only if the corresponding
base integral curve π ◦ γ = x : I → M satisfies

Dh
t ẋ(t) = − gradh G(x(t)), (25)

where Dh
t = ∇h

ẋ is the covariant derivative along x with respect to the Riemannian
(Levi-Civita) connection ∇h . Here, gradhG denotes the Riemannian gradient of the
potential G.

3 Mechanics of assignment flows

In this section, we get back to the scenario of image labeling, informally introduced
in Sect. 1.1. Section3.2 completes the definition of the assignment flow approach (1).
The assignment manifold underlying the assignment flow is introduced in Sect. 3.1
together with the Fisher–Rao metric in Sect. 3.3. We state and prove the main result of
this paper in Sect. 3.4 and calculate in Sect. 3.5 an explicit expression for the associated
Hamiltonian system in terms of the corresponding Lagrangian system.

3.1 Assignmentmanifold

Let G = (V, E) denote an undirected graph and identify

V = [m] with m := |V|. (26)
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Assume that for every node i ∈ V some data point fi is given in a metric space
(F , dF ), together with a set F∗ = { f ∗

1 , . . . , f ∗
n } ⊂ F of predefined prototypes, also

called labels, identified with

F∗ = [n] for n := |F∗|. (27)

Context based metric data classification or labeling refers to the task of assigning to
each node i ∈ V a suitable label in F∗, based on the metric distance to the given data
fi and the relation between data points encoded by the edge set E .
As introduced in Sect. 1.1, for every i ∈ V the assignment of labelsF∗ to a data point

fi is represented by an assignment vectorWi (t), where the j-th entryW j
i (t) represents

the probability for the j-th label f ∗
j . These assignment vectors are determined by (2)

and evolve on the relative interior of the (n − 1)-simplex

S := {p ∈ Rn : p > 0 and 〈p,1n〉 = 1} (28)

with barycenter
1S := 1

n1n . (29)

Accordingly, all probabilistic label choices on the graph are encoded as a single point
W ∈ W on the product space

W := S × · · · × S (m = |V| factors) , (30)

with barycenter
1W := (1S , . . . ,1S)�. (31)

Thus, the i-th component of W = (Wk)k∈V represents the probability distribution of
label assignments for node i ∈ V

Wi = (W 1
i , . . . ,Wn

i )� ∈ S. (32)

In the following, we always identify the spaceW from (30) with its matrix embedding

W = {W ∈ Rm×n : W > 0 and W1n = 1m}, (33)

by regarding the i-th componentWi of a pointW = (Wk)k∈V in (30) as the i-th row of
a matrix in Rm×n . Hence points W ∈ W are viewed as row-stochastic matrices with
full support, called assignment matrices, with assignment vectors (32) as row vectors.
The barycenter (31) can then also be expressed as a matrix

1W = 1m1S
� = 1

n1m1
�
n . (34)

The tangent space of S ⊂ Rn from (28) at any point p ∈ S is identified as

TpS = {v ∈ Rn : 〈v,1n〉 = 0} =: T0. (35)
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Hence TpS is represented by the same vector subspace T0 of codimension 1, for all
p ∈ S. In particular, the tangent bundle is trivial

TS = S × T0. (36)

Viewing W as an embedded submanifold of Rm×n by (33), we accordingly identify

TWW = {V ∈ Rm×n : V1n = 0} =: T0, for all W ∈ W ⊂ Rm×n . (37)

With this identification the tangent bundle is also trivial

TW = W × T0. (38)

3.2 Assignment flows

Assignment flows are dynamical systems onW for inferring probabilistic label assign-
ments that gradually become unambiguous label assignments as t → ∞. These
dynamical systems have the form

Ẇ (t) = RW (t)[F(W (t))], with W (0) ∈ W, (39)

where
F : W → Rm×n (40)

is a smooth function and

RW : Rm×n → TWW = T0, for W ∈ W, (41)

is the linear replicator map defined componentwise

RW [F(W )] = (
RWi Fi (W )

)
i∈V , W ∈ W, (42a)

via the replicator matrix

RWi = Diag(Wi ) − WiW
�
i , i ∈ V. (42b)

The function F couples the evolution of the individual assignment vectors Ẇi , i ∈ V ,
over the graph, typically by reinforcing tangent directions of similar assignment vec-
tors, and is therefore called affinity or similarity mapping. Each choice of a similarity
mapping F defines a particular assignment flow; see Sect. 4.2 for a basic instance. Our
main result stated in Sect. 3.4 characterizes a general class of admissible similarity
mappings F .
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3.3 Fisher–Raometric

From an information geometric viewpoint [6, 9], the canonical Riemannian structure
on S is given by the Fisher–Rao (information) metric

gp(u, v) :=
〈
u,

v

p

〉
, for all p ∈ S and u, v ∈ T0. (43)

This naturally extends to the product manifold structure of W (30) via the product
metric

gW (U , V ) :=
∑

i∈[m]
gWi (Ui , Vi ) =

〈
U ,

V

W

〉
, for all W ∈ W and U , V ∈ T0. (44)

which turns the assignment manifold W into a Riemannian manifold.
The orthogonal projection onto T0 andT0, respectively,with respect to theEuclidean

inner product are given by

PT0 : Rn → T0, PT0 := In − 1
n1n1

�
n ∈ Rn×n, (45a)

PT0 : Rm×n → T0, PT0 [A] := (
PT0 Ai

)
i∈V . (45b)

Next, we return to the replicator mappings (42). The linear mapping

Rp : Rn → T0, Rp = Diag(p) − pp� ∈ Rn×n (46)

is symmetric
R∗
p = R�

p = Rp, (47)

satisfies the relations

Rp = RpPT0 = PT0 Rp, (48a)

ker(Rp) = R1n, (48b)

and the restriction Rp|T0 : T0 → T0 to the linear subspace T0 ⊂ Rn is a linear
isomorphism with inverse given by [18, Lem. 3.1]

(Rp|T0)−1u = PT0 Diag
( 1
p

)
u = PT0

u

p
, for all u ∈ T0. (49)

Likewise, the replicator operator RW : Rm×n → T0 satisfies for all W ∈ W

RW = RW ◦ PT0 = PT0 ◦ RW (50)

and the restriction to the linear subspace T0 ⊂ Rm×n is a linear isomorphism with
inverse

(
RW |T0

)−1[U ] = PT0
[U
W

]
, for all U ∈ T0. (51)
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Since all the components RWi of RW are symmetric, we have for all X ,Y ∈ Rm×n

〈RW [X ],Y 〉 =
∑

i∈[m]
〈RWi Xi ,Yi 〉 (47)=

∑

i∈[m]
〈Xi , RWi Yi 〉 = 〈X ,RW [Y ]〉, (52)

showing thatRW is self-adjointR∗
W = RW with respect to the matrix inner product.

There is also a relation between the Fisher–Rao metric and the matrix inner product
in terms of the replicator operator.

Lemma 3.1 At any point W ∈ W , the replicator operator RW transforms the
Riemannian metric into the matrix inner product

gW (RW [U ], V ) = 〈U , V 〉, for all U , V ∈ TWW = T0. (53)

Proof Using the properties of the replicator operator RW directly results in

gW (RW [U ], V )
(44)=

〈
RW [U ], V

W

〉
(52)=

〈
U ,RW

[ V

W

]〉
(54a)

(50)=
〈
U ,RW ◦ PT0

[ V

W

]〉
(51)= 〈U , V 〉 (54b)

��
Corollary 3.2 Let J : W → R be a smooth function and assume there is a smooth map
� : W → Rm×n such that the differential of J takes the form

d J |W [V ] = 〈�(W ), V 〉 for all W ∈ W and V ∈ TWW = T0 (55)

with respect to the matrix inner product 〈·, ·〉. Then, the Riemannian gradient of J is
given by

gradg J (W ) = RW [�(W )] for all W ∈ W (56)

Proof Let V ∈ TWW = T0 be arbitrary. As a consequence of Lemma 3.1,

d J |W [V ] = gW
(
RW [�(W )], V )

for all V ∈ TWW = T0, (57)

with RW [�(W )] ∈ TWW = T0. Since this uniquely determines the Riemannian
gradient of J , the statement follows. ��

For functions J : W → R extending onto an open set, the above lemma directly
implies a relation between the Riemannian gradient and the usual gradient, a result
that is already well known [9, Prop. 2.2]. For this, suppose J̃ : U → R is a smooth
extension of J defined on some open set U ⊂ Rm×n containing W , i.e. J̃ |W = J .
Then, �(W ) can be chosen as the usual gradient with respect to the matrix inner
product ∂ J̃ (W ) ∈ Rm×n and the Riemannian gradient of J is given by

gradg J (W ) = RW [∂ J̃ (W )], for all W ∈ W. (58)
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3.4 The action functional

Our main result is summarized in the following theorem. It refers to affinity functions
F : W → Rm×n introduced in and discussed after equation (39). Applying the iden-
tifications TWW = T0 from (37) and TF(W )Rm×n = Rm×n for every W ∈ W allows
to view the differential of F as a linear operator

dF |W : T0 → Rm×n . (59)

The adjoint of dF |W with respect to the standard matrix inner product (5) on Rm×n

and T0 ⊂ Rm×n is denoted by

dF |∗W : Rm×n → T0. (60)

Theorem 3.3 Let F : W → Rm×n be an affinity map and W : [t0, t1] → W a solution
of the corresponding assignment flow (39). Then W (t) is a critical point of the action
functional

L(W ) =
∫ t1

t0

1
2‖Ẇ (t)‖2g + 1

2

∑

i∈V
VarWi (t)

(
Fi (W (t))

)
dt, (61)

if and only if the affinity function F fulfills the condition

0 = RW (t) ◦ (dF |W (t) − dF |∗W (t)) ◦ RW (t)[F(W (t))] for t ∈ [t0, t1], (62)

where dF |∗W (t) is the adjoint linear operator of dF |W (t) from (60) and RW (t) is
the replicator operator defined by (42a). This condition is equivalent to the Euler–
Lagrange equation

Dg
t Ẇ (t) = 1

2

∑

i∈V
gradgVarWi (t)

(
Fi (W (t))

)
for t ∈ [t0, t1]. (63)

Remark 3.4 Theorem 3.3 characterizes the class of affinity functions, in terms of con-
dition (62), for which solutions to the assignment flow equation (39) are stationary
points of the action functional (61) and the Euler–Lagrange equation (63), respec-
tively. We defer most of the further discussion to Sect. 4 but mention one important
point here. Since every first-order ODE can trivially be described as a special case of
the Euler–Lagrange equation of some quadratic Lagrangian it is worth pointing out
that the Lagrangian L in Theorem 3.3 is classical, that is, of the form kinetic minus
potential energy. In particular, the potential − 1

2

∑
i∈V VarWi (t)

(
Fi (W (t))

)
(note the

minus sign) is a non-positive function. Because of (65) in connection with the formula
for the energy in (24), solutions of the assignment flow equation (39) correspond pre-
cisely to those solutions of the Euler–Lagrange equation with energy 0. Since 0 is the
maximum of the potential this energy value is precisely the Mañé critical value of this
Lagrangian system, see Sect. 4 for further remarks.

We proceed with Lemmata to prepare the proof of Theorem 3.3.
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Lemma 3.5 Let p ∈ S and f ∈ Rn. Then

‖Rp f ‖2g = 〈 f , Rp f 〉 = Ep[ f 2] − (Ep[ f ])2 = Var p( f ). (64)

Thus, for W ∈ W and F ∈ Rm×n, we have

‖RW [F]‖2g = 〈F,RW [F]〉 =
∑

i∈V
VarWi (Fi ). (65)

Proof We have

‖Rp f ‖2g = gp(Rp f , Rp f )
(53)= 〈 f , Rp f 〉 (46)= 〈 f , p � f − 〈p, f 〉p〉 (66a)

= 〈 f �2, p〉 − 〈 f , p〉2 = Ep[ f 2] − (Ep[ f ])2 = Var p( f ). (66b)

Therefore, it follows

‖RW [F]‖2g (53)= 〈F,RW [F]〉 (42a)=
∑

i∈[m]
〈Fi , RWi Fi 〉 =

∑

i∈V
VarWi (Fi ) (67)

��

Next, we compute the differential of the assignment flow vector field (39) viewed
as a mapping

R[F] : W → T0, W �→ R[F](W ) := RW [F(W )]. (68)

Lemma 3.6 With the identifications TWW = T0 and TRW [F(W )]W = T0 due to (37),
the differential of the mapping (68) is a linear map dR[F]|W : T0 → T0, given by

dR[F]|W [V ] = RW ◦ dF |W [V ] + B(W , F(W ))[V ], V ∈ T0, (69a)

where the i-th row of the linear map B(W , F(W )) : T0 → T0 is defined via matrix
multiplication

(B(W , F)[V ])i := B(Wi , Fi )Vi , i ∈ V, W ∈ W, F ∈ Rm×n, (69b)

with matrix B given by

B(p, f ) := Diag( f ) − 〈p, f 〉In − p f �, p ∈ S, f ∈ Rn . (69c)

Proof A short calculation shows 〈B(Wi , Fi (W ))Vi ,1n〉 = 0 for all i ∈ V , that is
B(W , X)[V ] ∈ T0. Let η : (−ε, ε) → W be a curve with η(0) = W and η̇(0) = V .

123



On the geometric mechanics of assignment flows for...

Keeping in mind Rp = Diag(p) − pp�, we obtain for each row vector indexed by
i ∈ V
(
dR[F]|W [V ])i = d

dt Rηi (t)Fi (η(t))
∣∣
t=0 = d

dt Rηi (t)
∣∣
t=0Fi (W ) + RWi

d
dt Fi (η(t))

∣∣
t=0

(70a)

= (
Diag(Vi ) − ViW

�
i − WiV

�
i

)
Fi (W ) + (

RW
[ d
dt F(η(t))

∣∣
t=0

])
i

(70b)

= (
B(W , F(W ))[V ])i + (

RW ◦ dF |W [V ])i , (70c)

where Diag(Vi )Fi (W ) = Diag(Fi (W ))Vi and V�
i Fi (W ) = Fi (W )�Vi was used to

obtain the last equality. ��
Next,we consider the covariant derivative of a vector fields along a curve p : I → S,

with I ⊂ R an interval. Due to TS = S × T0, we view a vector field v(t) along p(t)
as a map v : I → T0, and also its usual time derivative v̇ : I → T0, since T0 is a vector
space. Defining

A : S × T0 → T0, (p, v) �→ A(p, v) := v�2

p
− ‖v‖2g p (71)

and using the expression from [9, Eq. (2.60)] (with α set to 0), the covariant derivative
Dg
t v of v is related to v̇ by

Dg
t v(t) = v̇(t) − 1

2
(v(t))�2

p(t)
+ 1

2‖v(t)‖2g p(t) = v̇(t) − 1
2 A(p(t), v(t)). (72)

Similarly, as a consequence of TW = W × T0, we regard a vector field V (t) along
a curve W : I → W as a mapping V : I → T0, and likewise V̇ : I → T0. Since
the covariant derivative on a product manifold equipped with a product metric is
the componentwise application of the individual covariant derivatives, the covariant
derivative of V on W has the form

Dg
t V (t) = V̇ (t) − 1

2A(W (t), V (t)), (73)

with i-th row of the last term given componentwise by (71)

A : W × T0 → T0, (A(W , V ))i = A(Wi , Vi ) for all i ∈ [m]. (74)

The acceleration of a curveW (t) onW is the covariant derivative of its velocity vector
field V (t) := Ẇ (t), related to the ordinary time derivative V̇ = Ẅ in Rm×n by

Dg
t Ẇ (t) = Ẅ (t) − 1

2A(W (t), Ẇ (t)). (75)
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Lemma 3.7 Suppose W : I → W is a solution of the assignment flow (39). Then the
acceleration of W (t) in terms of the covariant derivative of Ẇ (t) takes the form

Dg
t Ẇ = RW ◦ dF |W ◦ RW [F(W )] + 1

2A
(
W ,RW [F(W )]). (76)

Proof Since W (t) is a solution of Ẇ (t) = RW (t)[F(W (t))], the second derivative
Ẅ (t) = d

dt Ẇ (t) takes the form (to simplify notation we omit the argument t)

Ẅ = d
dtRW [F(W )] = dR[F]|W [Ẇ ] Lem. 3.6= RW ◦ dF |W [Ẇ ] + B(W , F(W ))[Ẇ ]

(77a)

= RW ◦ dF |W ◦ RW [F(W )] + B(W , F(W ))[RW [F(W )]], (77b)

where B is defined by (69b). We have 〈 f , Rp f 〉 = ‖Rp f ‖2g by Lemma 3.5 and using
(69c)

B(p, f )Rp f = ( f − 〈p, f 〉1n) � (Rp f ) − 〈 f , Rp f 〉p (78a)

= 1
p (Rp f )

�2 − ‖Rp f ‖2g p = A(p, Rp f ). (78b)

This implies B(W , F(W ))[RW [F(W )]] = A(W ,RW [F(W )]) and results in the
identity

Ẅ = RW ◦ dF |W ◦ RW [F(W )] + A
(
W ,RW [F(W )]). (79)

Substituting this expression into (75) yields (76). ��
As a final preparatory step, we define the potential

G : W → R, G(W ) := − 1
2‖RW [F(W )]‖2g (65)= − 1

2

∑

k∈V
VarWk (Fk(W )) (80)

and compute its Riemannian gradient.

Lemma 3.8 The Riemannian gradient of the potential G from (80) is given by

gradgG(W ) = −RW ◦ dF |∗W ◦ RW [F(W )] − 1
2A(W ,RW [F(W )]), ∀W ∈ W,

(81)
where dF |∗W (t) is the adjoint linear operator of dF |W (t) from (60).

Proof Let W ∈ W . In the following, we derive the expression in (81) by applying
Corollary 3.2. To this end, take any V ∈ TWW = T0 and let η : (−ε, ε) → W be a
curve with η(0) = W and η̇(0) = V . Then

dG|W [V ] = d
dt G(η(t))

∣∣
t=0

Lem. 3.5= − 1
2

d
dt

〈
F(η(t)),Rη(t)[F(η(t))]〉∣∣t=0 (82a)

= − 1
2

〈 d
dt F(η(t))

∣∣
t=0,Rη(t)F(η(t))

〉 − 1
2

〈
F(η(t)), d

dtRη(t)F(η(t))
∣∣
t=0

〉

(82b)

= − 1
2

〈
dF |W [V ],RW [F(W )]〉 − 1

2

〈
F(W ), dR[F]|W [V ]〉. (82c)
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Using the expression for dR[F]|W from Lemma 3.6 and R∗
W = RW from (52), the

second inner product takes the form

〈
F(W ), dR[F]|W [V ]〉 = 〈

F(W ),RW ◦ dF |W [V ]〉 + 〈
F(W ),B(W , F(W ))[V ]〉

(83a)

= 〈
dF |∗W ◦ RW [F(W )], V 〉 + 〈

B∗(W , F(W ))[F(W )], V 〉
.

(83b)

Substituting back this formula into the above expression for dG|W together with the
expression 〈

dF |W [V ],RW [F(W )]〉 = 〈
V , dF |∗W ◦ RW [F(W )]〉 (84)

for the first inner product, results in

dG|W [V ] = 〈 − dF |∗W ◦ RW [F(W )] − 1
2B

∗(W , F(W ))[F(W )], V 〉
(85a)

= 〈�(W ), V 〉. (85b)

Due to Corollary 3.2, the Riemannian gradient is given by

gradg G(W ) = RW [�(W )] (86a)

= −RW ◦ dF |∗W ◦ RW [F(W )] − 1
2RW [B∗(W , F(W ))[F(W )]].

(86b)

Regarding the adjoint mapping B∗, we have

(B∗(W , F)[U ])i = B(Wi , Fi )
�Ui for all i ∈ V (87)

and by (69c)

B(p, f )Rp = (Diag( f ) − 〈p, f 〉In − p f �)(Diag(p) − pp�) (88a)

= Diag( f � p) − 〈p, f 〉Diag(p) − p( f � p)�

− ( f � p)p� + 〈p, f 〉pp� + pp� f p� (88b)

= (Diag(p) − pp�)(Diag( f ) − 〈p, f 〉In − f p�) (88c)

= RpB(p, f )�. (88d)

Thus, by (78), we obtain RpB(p, f )� f = A(p, Rp f ) and consequently by the
componentwise definitions of B∗ in (87), A in (74) and RW in (42a),

RW [B∗(W , F(W ))[F(W )]] = A(W ,RW [F(W )]). (89)

Substitution into (86b) yields (81). ��
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Proof of Theorem 3.3 Due to Lemma 3.5, the Lagrangian of the action functional (61)
has the form

L(W , V ) = 1
2‖V ‖2g − G(W ), (90)

with G(W ) defined by (80). Therefore, the Euler–Lagrange equation (63) is a direct
consequence of Proposition 2.1. Due to Lemmas 3.7 and 3.8, the expression for the
acceleration ofW (t) and the Riemannian gradient of G atW (t) both contain the term

1
2A(W (t),RW (t)[F(W (t))]) (91)

with opposite signs, which yields the relation

Dg
t Ẇ (t) + gradgG(W (t))

= RW (t) ◦ dF |W (t) ◦ RW (t)[F(W (t))] − RW (t) ◦ dF |∗W (t) ◦ RW (t)[F(W (t))]
= RW (t) ◦ (dF |W (t) − dF |∗W (t)) ◦ RW (t)[F(W (t))].

As a consequence, the characterization of F in (62) is equivalent to the Euler–Lagrange
equation (63) and by Proposition 2.1 equivalent to W (t) being a critical point of the
action functional. ��

3.5 Lagrangian and Hamiltonian point of view

Theorem 3.3 rests upon the representation of the assignment flow as a Lagrangian
mechanical system of the form kinetic minus potential energy (90), as summarized
in Sect. 2.4. Due to this specific form, Proposition 2.1 can be applied to characterize
critical points of the action functional L from Theorem 3.3 as solutions to the Euler–
Lagrange equation (63), which in turn allows to derive condition (62).

For general Lagrangians, however, Proposition 2.1 is not applicable and critical
points of the action functional are characterized as integral curves of the Lagrangian
vector field XE as detailed in Sect. 2.2. Since Lagrangians of the form kinetic minus
potential energy (22) are hyperregular, the representation as Hamiltonian system via
the Legendre transformationFL is an equivalent alternative. Asmentioned in Sect. 2.3,
the energy E : TW → R, the Hamiltonian H : T ∗W → R and their corresponding
vector fields XE on TW and XH on T ∗W are related via

E = H ◦ FL and XE = (FL)−1∗ XH . (92)

To obtain interpretable explicit formulas, it will be more convenient to work on TW
instead of T ∗W . In the following, we derive an explicit expression for the Lagrangian
vector field XE and relate its corresponding integral curves to the Euler–Lagrange
equation (63) of Theorem 3.3. Because XE is the symplectic gradient of the energy
E with respect to the Lagrangian form ωL , see (13), we first calculate an alternative
formula for ωL in terms of the Fisher-Rao metric. For this we exploit the fact that the
assignmentmanifold is a so calledHessianmanifold [19], that is in suitable coordinates
the Fisher-Rao metric is the Hessian of a convex function.
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Since TW = W×T0 (38) is trivial, the tangent space of TW at any point (W , V ) ∈
TW can be identified with the vector space

T(W ,V )TW = T0 × T0. (93)

With this identification, the Lagrangian two-form ωL has the following simple
expression.

Lemma 3.9 Let (W , V ) ∈ TW and A = (A′, A′′), B = (B ′, B ′′) ∈ T(W ,V )TW =
T0 × T0. Then the Lagrangian two-form can be expressed via the Fisher-Rao metric
as

ωL |(W ,V )

(
A, B

) = gW (A′, B ′′) − gW (A′′, B ′). (94)

Proof In the following, if ϕ is a real valued function on S or W , then its coordinate
representation is denoted by ϕ̂. A global chart on S is given by ηS : S → Rn−1 with
p �→ ηS(p) = (p1, . . . , pn−1). It is a standard result from information geometry [20]
that the negative entropy ϕ, a smooth convex function on S defined by

ϕ : S → R, p �→
∑

i∈[n]
pi log(pi ) = 〈p, log(p)〉, (95)

induces the Fisher-Rao metric in coordinates ηS , denoted by (gSi j ), as the Hessian of
ϕ̂

gSi j (p) = ∂2ϕ̂

∂ pi∂ p j
(p1, . . . , pn−1) for all i, j ∈ [n − 1]. (96)

Thus, a single simplexS has the structure of a Hessianmanifold [19]. As a global chart
of the product manifoldW = ∏

i∈[m] S we take the product chart ηW : W → Rm(n−1)

with W �→ ηW (W ) = (ηS(W1), . . . , ηS(Wm)) = (x1, . . . , xm(n−1)) = x , where
each Wi lies in S for all i ∈ [m]. Define the accumulated negative entropy by

ϕacc : W → R, W �→
∑

i∈[m]
ϕ(Wi ). (97)

and let (gWi j ) denote the representation of the product Fisher-Rao metric (44) onW in
coordinates ηW . Since ϕacc separates over the product structure ofW , the accumulated
negative entropy also induces the product Riemannian metric in the chart ηW

gWi j (x) = ∂2ϕ̂acc

∂xi∂x j
(x), (98)

equipping also the assignment manifold with the structure of a Hessian manifold [19].
Now, take an arbitrary point (W , V ) ∈ TW = W × T0 and let (x, v) be the

corresponding coordinateswith respect to the chartηW . According to [15, Prop. 3.5.6],
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the Lagrangian two-form ωL (13) in coordinates is given by

ωL =
∑

i, j

(
∂2L

∂vi∂x j
dxi ∧ dx j + ∂2L

∂vi∂v j
dxi ∧ dv j

)
. (99)

Since the coordinate expression of the Lagrangian (90) is L(x, v) = 1
2

∑
i, j g

W
i j viv j−

G(x), the second-order derivatives are

∂2L

∂vi∂x j
=

∑

k

∂gWik
∂x j

vk and
∂2L

∂vi∂v j
= gWi j . (100)

Plugging these expressions into (99) and rearranging the first sum using dx j ∧ dxi =
−dxi ∧ dx j yields

ωL =
∑

i< j

∑

k

(
∂gWik
∂x j

− ∂gWjk
∂xi

)
vkdxi ∧ dx j +

∑

i, j

gWi j dx
i ∧ dv j . (101)

Due to the Hessian structure (98)

∂gWik
∂x j

= ∂3ϕ̂acc

∂x j∂xi∂xk
= ∂3ϕ̂acc

∂xi∂x j∂xk
= ∂gWjk

∂xi
(102)

holds and the first sum in (101) vanishes, resulting in the simplified expression

ωL =
∑

i j

gWi j dx
i ∧ dv j . (103)

Suppose A = (A′, A′′), B = (B ′, B ′′) ∈ T(W ,V )TW = T0 × T0 with coordinates

A =
∑

i

A
′i ∂

∂xi
+

∑

i

A
′′i ∂

∂vi
and B =

∑

i

B
′i ∂

∂xi
+

∑

i

B
′′i ∂

∂vi
. (104)

Evaluating the Lagriangian two-form (103) we finally obtain

ωL(A, B) =
∑

i j

gWi j A
′i B

′′ j −
∑

j i

gWj i A
′′ j B

′i = g(A′, B ′′) − g(A′′, B ′). (105)

��

Now that we have an explicit expression for the Lagrangian two-form ωL , we are
in a position to calculate an explicit representation of the Lagrangian vector field XE .
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Proposition 3.10 The Lagrangian vector field XE on TW associated to the
Lagrangian (90) at a point (W , V ) ∈ TW = W × T0 is given by

XE (W , V ) =
(

V
1
2A(W , V ) − gradgG(W )

)
. (106)

Proof Wedirectly use the definition (16) of the Lagrangian vector field XE . For this, let
B = (B ′, B ′′) ∈ T(W ,V )TW = T0×T0 be arbitrary and assume, γ (t) = (W (t), V (t))
is a smooth curve in TW = W × T0 with

γ (0) = (W (0), V (0)) = (W , V ) and γ̇ (0) = (Ẇ (0), V̇ (0)) = B = (B ′, B ′′).
(107)

The time derivative of the potential G is expressed via the Riemannian gradient

d
dt G(W (t))

∣∣
t=0 = dG|W [B ′] = gW

(
gradgG(W ), B ′). (108)

By (73), the covariant derivative of V (t) at t = 0 is Dg
t V (0) = B ′′ − 1

2A(W , V ),
resulting in

d
dt

1
2

∥∥V (t)
∥∥2
g

∣∣
t=0 = 1

2
d
dt gW (t)

(
V (t), V (t)

)∣∣
t=0 = gW (0)

(
V (0), Dg

t V (0)
)

(109a)

= gW
(
V , B ′′ − 1

2A(W , V )
)
. (109b)

Putting everything together we obtain the following relation for the differential of the
energy E from (24)

dE |(W ,V )[B] = d
dt E(W (t), V (t))

∣∣
t=0 = d

dt
1
2

∥∥V (t)
∥∥2
g

∣∣
t=0 + d

dt G(W (t))
∣∣
t=0

(110a)

= gW
(
V , B ′′) − gW

( 1
2A(W , V ) − gradgG(W ), B ′). (110b)

Writing XE = (X ′
E , X ′′

E ) ∈ T0 ×T0 and comparing (110b) with the above expression
for ωL from Lemma 3.9 shows X ′

E (W , V ) = V and X ′′
E (W , V ) = 1

2A(W , V ) −
gradgG(W ). ��

Any solution curve γ (t) = (W (t), V (t)) ∈ TW = T0 × T0 of the Lagrangian
dynamics induced by the Lagrangian vector field XE associated to the Lagrangian
(90) of Theorem 3.3 fulfills the ODE

(
Ẇ
V̇

)
= XE (W , V ) =

(
V

1
2A(W , V ) − gradgG(W )

)
. (111)

This formof theHamiltonianODEsimply reflects the fact that this first-order dynamics
on TW is induced by a second-order ODE onW . Indeed, substituting V = Ẇ in the
second component of XE results in

Ẅ = V̇ = 1
2A(W , V ) − gradgG(W )

(75)⇔ Dg
t Ẇ = − gradgG(W ), (112)
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which we have already known to be satisfied for the base curve W (t) by (63) of
Theorem 3.3.

Remark 3.11 Equation (111), and in particular its version on the left-hand side of
(112), gives an alternative way to prove condition (62) in Theorem 3.3, without the
use of Proposition 2.1. For this, we can directly apply Lemma 3.8 and the result in
Eq.79.

4 Discussion

In this section, we discuss various properties and consequences of Theorem 3.3.

4.1 Mañé critical value

In his influentialwork [21]Mañé introduced critical valueswhich should be interpreted
as energy levels that mark important dynamical and geometric changes for the Euler–
Lagrange flow, see [22] for a nice introduction. Dynamical properties at energies
being equal to a Mañé critical value are often times hard to analyze. In general,
there are various related Mañé critical values, however for classical Lagrangians such
as L , e.g. (90), in Theorem 3.3 all of them agree and equal the maximum of the
potential. As pointed out before the potential part of the Lagrangian L is G(W ) =
− 1

2

∑
i∈V VarWi (t)

(
Fi (W (t))

)
which has 0 as maximum. At the same time solutions

to the assignment flow equation (39) are precisely the solutions to the Euler–Lagrange
equation (63) of energy 0, i.e. at the Mañé critical value of L.

In the following, basic properties of the set of Mañé critical points onW

Mcrit := argmaxW∈W G(W ) = G−1(0) (113)

are investigated and summarized in Proposition 4.1. Subsequently, based on a result
from geometric mechanics, Proposition 4.4 shows that integral curves of the assign-
ment flow that are critical points of the action functional L in Theorem 3.3 and start
in the complement

Q := W \ Mcrit (114)

are actually reparametrized geodesics of the so called Jacobi metric introduced below.
By Lemma 3.5, we have

0 = G(W )
(80)= − 1

2‖RW [F(W )]‖2g ⇔ 0 = RW [F(W )], (115)

that is the potential assumes its maximum at W if and only if W is an equilibrium
point of the assignment flow (39). Due toRW |T0 being a linear isomorphism by (51),
we further obtain

0 = RW [F(W )] (50)= RW |T0 ◦ PT0 [F(W )] ⇔ 0 = PT0 [F(W )]. (116)
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Thus, we need to consider the zero set of the smooth map

PT0 ◦ F : W → T0. (117)

We restrict our analysis to affinity functions F for which the differential d(PT0 ◦ F)

has constant rank on W , in the following denoted by r . To avoid the trivial case
PT0 ◦ F ≡ const we further restrict to the case r ≥ 1. A basic instance of this case is
given in Sect. 4.2 with F being a linear map.

Due to the Constant-Rank Level Set Theorem [23, Thm. 5.12], the zero set

(PT0 ◦ F)−1(0) = G−1(0) = Mcrit ⊂ W (118)

is a properly embedded submanifold of W with dimension

dim(Mcrit) = dim(W) − r ≤ dim(W) − 1. (119)

Since the dimension of Mcrit is strictly less than dim(W), it is a submanifold with
measure zero inW [23, Cor. 6.12]. Therefore, the complementQ (114), that is the set
of points W with G(W ) < 0, is a dense ([23, Prop. 6.8]) subset of W . According to
[23, Prop. 5.5], being properly embedded inW is equivalent to being a closed subset
of W (in the subspace topology). Thus, Q is an open subset of W and consequently
also a submanifold. Overall we have proven the following statement.

Proposition 4.1 If the differential d(PT0 ◦ F) has constant rank r ≥ 1 onW , then the
setMcrit of Mañé critical points (113) is a submanifold ofW with measure zero and
its complement Q ⊂ W (114) is an open and dense subset.

Equipped with this result, we are now able to characterize solutions of the
assignment flow (39) starting in Q as reparametrized geodesics.

Definition 4.2 [15, Def. 3.7.6] Let h be a Riemannian metric on M and G : M → R a
potential. Assume C is a constant such that G(x) < C holds for all x ∈ M . Then the
Jacobi metric is defined by

hC := (C − G)h. (120)

Theorem 4.3 [15, Thm. 3.7.7] Up to reparametrization, the base integral curves of
the Lagrangian L(x, v) = 1

2‖v‖2h − G(x) with energy E0 are the same as geodesics
of the Jacobi metric hE0 with energy 1.

Since G < 0 on Q, we restrict our investigation to the Riemannian submanifold
(Q, g|Q) and set C := 0, resulting in the Jacobi metric h0 = (−G)g|Q of the form

(h0)W
(80)= 1

2

∑

k∈V
VarWk (Fk(W )) gW for any point W ∈ Q. (121)

Now, letW (t) be an integral curve of the assignment flow (39). If the initial valueW (0)
lies in Q, then the entire integral curve W (t) remains in Q. This is a consequence of
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Mañé critical points being equilibrium points by (115) and the fact that the assignment
flow is a first-order ODE. If additionallyW (t) is a critical point of the action functional
L from Theorem 3.3, then W (t) is a base integral curve with energy E0 = 0. Thus,
Theorem 4.3 directly implies the following statement.

Proposition 4.4 Let W (t) be an integral curve of the assignment flow (39). If W (t) is
a critical point of the action function L in Theorem 3.3 with initial value W (0) ∈ Q,
then, up to reparametrization, W (t) is a geodesic of the Jacobi metric (121).

Since geodesics are locally length-minimizing, this result shows that, up to initial
conditions in a set of measure zero, solutions to the assignment flow locally realize
shortest paths between assignments.

Remark 4.5 It is important to note that the previous statement is only true for solutions
of the assignment flow, which is a first-order ODE. A general solution of the second-
order ODE Euler–Lagrange equation (63) might leave Q in finite time and cross the
setMcrit .

Next, we consider the arc length of an integral curve W (t) from Proposition 4.4
with respect to the Jacobi metric h0. Because of

‖Ẇ (t)‖2h0 = −G(W (t))‖Ẇ‖2g (80)= 2G2(W (t)), (122)

the arc length takes the form

α(t) :=
∫ t

0
‖Ẇ (τ )‖h0dτ =√

2
∫ t

0
|G(W (τ ))|dτ = 1

2

∑

k∈V

∫ t

0
VarWk (τ )(Fk(W (τ )))dτ.

(123)
Due to the initial conditionW (0) ∈ Q, the solutionW (t) is a regular curve and the arc
length can be used to reparametrize W (t) by arc length, thereby obtaining the actual
geodesic

W̃ (s) := W (α−1(s)) (124)

with respect to the Jacobi metric h0. Setting F̃(W̃ ) := (
√
2|G(W̃ )|)−1F(W̃ ), a

standard calculation using the inverse function rule further reveals

d

ds
W̃ (s) = Ẇ (α−1(s))

1√
2|G(W̃ (s))| = RW̃ (s)[F̃(W̃ (s))]. (125)

Thus, the actual Jacobian geodesics W̃ (s) themselves are solutions to an assignment
flow, one where the original affinity mapping F has been scaled by the combined
variations of its components. This allows to investigate Riemannian properties of the
Jacobian metric and its geodesics in future work.

In the next section, we directly determine the set Mcrit for the a basic instance of
an assignment flow.
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4.2 Admissible affinity functions

Condition (62) characterizes affinity functions F for Theorem 3.3 to hold.We contrast
this condition with a simple affinity function used in prior work and directly determine
the corresponding setMcrit of Mañé critical points.

The recent paper [18, Proposition 3.6] introduced a reparametrization, called S-
flow, of the original assignment flow formulation of [2]. The distance information
between each data point fi ∈ F and the labels f ∗

j ∈ F is collected in the data matrix

D ∈ Rm×n with Di j = dF ( fi , f ∗
j ), for i ∈ [m], j ∈ [n], (126)

where dF is the metric introduced in Sect. 3.1. Intuitively it represents how well each
data point is represented by the labels. For a nonnegative averaging matrix

� ∈ Rm×m with � ≥ 0 and �1m = 1m, (127)

the S-flow equations read

Ṡ = RS[�S], S(0) = exp1W (−�D), (128a)

Ẇ = RW [S], W (0) = 1W , (128b)

where the so-called lifting map

expW : T0 → W, expW = ExpW ◦RW , W ∈ W, (129a)

(
expW (V )

)
i = Wi � eVi

〈Wi , eVi 〉 , i ∈ [m], W ∈ W, V ∈ T0 (129b)

is the composition of the mapping (42a) and the exponential map Exp of (W, g)
with respect to the so-called e-connection of information geometry [6]. Note that both
solutions S(t),W (t) evolve on W and that W (t) depends on S(t) but not vice versa.
Hence we focus on the system (128a) and the specific affinity function given bymatrix
multiplication

F(S) = �S. (130)

The differential of F at S ∈ W is therefore also given by matrix multiplication

dF |S[V ] = �V , (131)

that is condition (62) holds in particular if � = �� is symmetric. This assumption
was adopted in [18] and in a slightly more general form also in [7].

Next,wedetermine the setMcrit ofMañé critical points (113) basedon the condition
on the right-hand side of (116). A basic calculation using the properties of PT0 and �

shows that these two linear operators commute, resulting in

PT0 [F(W )] = PT0 [�W ] = �PT0 [W ] = �
(
W − 1W

)
for all W ∈ W. (132)
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Since the corresponding differential is justmatrixmultiplication independent ofW∈W

d(PT0 ◦ F)|W [V ] = PT0 [�V ] = �V for all V ∈ T0, (133)

the rank r of d(PT0 ◦ F) is constant. For Proposition 4.1 to hold, we need to check
that the rank satisfies r ≥ 1. For this, denote the corresponding kernel of (133) by

�� := ker
(
d(PT0 ◦ F)

) = {V ∈ T0 | �V = 0}. (134)

Lemma 4.6 dim(��) = (n − 1) dim(ker(�)) and therefore the rank of d(PT0 ◦ F)

onW is r = (n − 1) rank(�).

Proof Denote the standard basis of Rn by e1, . . . , en . A basis for T0 (35) is then given
by

bi := ei − en, for i ∈ [n − 1]. (135)

Furthermore, set K := dim(ker(�)) and let a1, . . . , aK be a basis of ker(�) ⊂ Rm .
Then, for every k ∈ [K ] and i ∈ [n − 1]

akb
�
i 1n = ak〈bi ,1n〉 = 0 and �akb

�
i = 0, (136)

showing that akb�
i ∈ ��. As all the ak and bi are each linear independent, so are their

outer products akb�
i for all k ∈ [K ] and i ∈ [n − 1]. Now, let V ∈ �� be arbitrary.

Writing V as V = ∑
i∈[n] Vei e�

i we obtain

0
(37)= V1n =

∑

i∈[n]
Vei ⇔ Ven = −

∑

i∈[n−1]
Vei , (137)

which in turn shows that V can be expressed in terms of the basis bi as
V = ∑

i∈[n−1] Veib�
i . On the other hand, the i-th column of V , given by Vei ,

fulfills �Vei = 0 and can be expressed as Vei = ∑
k∈[K ] λki ak , with coeffi-

cients λki ∈ R. Putting everything together results in V = ∑
i∈[n−1] Veib�

i =
∑

i∈[n−1]
∑

k∈[K ] λki akb�
i , showing that all the akb

�
i are indeed a basis for ��. As a

result, the formulas for dim(��) and the rank

r = dim(T0)−dim(��) = (n−1)m−(n−1) dim(ker(�)) = (n−1) rank(�) (138)

follow. ��
As a consequence of rank(�) ≥ 1 by (127), a lower bound on the rank r of

d(PT0 ◦ F) is given by r ≥ n − 1 ≥ 1. Therefore, Proposition 4.1 applies and Mcrit
for the S-flow is a submanifold of W with measure zero. The expression of PT0 ◦ F
in terms of � from (132) and the fact that W − 1W lies in T0 for all W ∈ W allow to
explicit characterization Mcrit as an affine subspace

Mcrit
(118)= (PT0 ◦ F)−1(0)

(132)= (1W + ��) ∩ W. (139)
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with dimension

dim(Mcrit)
(119)= dim(W) − r

Lem. 4.6= dim(��) ≤ (m − 1)(n − 1). (140)

As� is assumed to be given,Mcrit can explicitly be constructed after a basis for ker(�)

has been calculated. Therefore, we are able to check if S(0) /∈ Mcrit , in which case
the corresponding integral curve S(t) of the S-flow (128a) would be a reparametrized
geodesic for the Jacobi metric (121) with energy E0 = 0, according to Theorem 4.3.

We conclude this section with another observation that should stimulate future
work. Under the afore-mentioned symmetry assumption on the averaging matrix, a
continuous-domain approach was studied in [18] corresponding to (128) at ‘spatial
scale zero’. The latter means to consider only parameter matrices � in (128a) whose
sparse row vectors �i encode nearest-neighbor interactions of Si and {Sk : k ∼ i}
on an underlying regular grid graph, and to consider the right-hand side of (128a) as
discretized Riemannian gradient of a continuous-domain variational approach with
pointwise defined variables. Specifically, replacing i ∈ V by locations x ∈ U ⊂ Rd ,
the vector field S : V → S, i �→ Si , becomes a simplex-valued vector field S : U → S,
x �→ S(x), that has to solve a variational inequality. Besides analyzing existence of
a minimizer in a suitable function space and a corresponding dedicated numerical
algorithm, a heuristically (under too strong regularity assumptions) derived partial
differential equation was presented that is supposed to characterize any minimizer S∗
and reads

RS∗(−�S∗ − αS∗) = 0, (141)

where RS∗ applies pointwise RS∗(x) to the vector (−�S∗ −αS∗)(x) at every x ∈ �, in
the same way as the mappingRW defined by (42a) amounts to applying the mappings
(42b) at every vertex i ∈ V .

From this viewpoint, condition (62),

0 = RW (t) ◦ (dF |W (t) − dF |∗W (t)) ◦ RW (t)[F(W (t))], (142)

that was shown to be equivalent to the Euler–Lagrange equation (63), should become
the spatially-discrete but nonlocal analogon of (141) in the limit t → ∞. We leave
the exploration of this observation for future work.

4.3 Geometric dynamics versus optimization

In contrast to classical approaches of the labeling problem, the presented dynamical
geometric formulation does not merely rely on finding maximizers of a task specific
objective function, but instead solely depends on the Lagrangian dynamics governing
the inference process. In the following, this is discussed in more detail.

Classical formulations of image labeling [24] are usually formulated as minimiza-
tion problems of (preferably convex) functions minX J (X), where global minimizers
are associated with meaningful label assignments. As a consequence, the minimiz-
ers themselves are the solution of the labeling problem, independent of any specific
optimization strategy used to find or approximate them.
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In [18, Pro. 3.9, Prop. 3.10] it was shown that if the averagingmatrix� is symmetric
� = ��, then the above mentioned S-flow (128a) is actually a Riemannian gradient
ascent flow with respect to the function

J (S) = 1
2 〈S,�S〉 = 1

2‖S‖22 − 1
4

∑

i∈V

∑

j∈Ni

�i j‖Si − S j‖22. (143)

Similar to the continuous case in [18, Prop. 4.2], it can be shown that the global
maximizers of J are spatially constant assignments, i.e. every node in the graph has
the same label. This can directly be seen from the right-hand side expression for J in
(143). In order for J to obtain its supremum, the first term ‖S‖22 needs to be maximal,
which happens precisely if every Si is one of the standard basis vectors, and the second
term

∑
i∈V

∑
j∈Ni

�i j‖Si−S j‖22 needs to beminimal (zero), which happens precisely
if all the Si have the same value at all nodes i ∈ V , that is S is spatially constant.

Therefore, in contrast to the above mentioned classical methods, we are not inter-
ested in maximizers of the function J , as they generally do not represent meaningful
assignments. Indeed, any nontrivial assignment the S-flow S(t) converges to (which
experimentally happens [7, 18]) cannot be amaximizer of J . Rather, the integral curves
themselves, that is the inference process governed by the spatially coupled replicator
dynamics, is the crucial element responsible for producing meaningful label assign-
ments as limit points. This highlights the importance of the Lagrangian mechanical
viewpoint of the assignment flow. This second-order dynamics formulation allows to
relate the assignment flow to other rich areas of mathematics and theoretical physics,
with the aim to further investigate and reveal its properties for metric data labeling.

4.4 Directly related work

In [16, Thm. 2.1], the authors claim that all uncoupled equations of the form ṗ =
RpF(p), on a single simplex p(t) ∈ S, satisfy theEuler–Lagrange equation associated
with the cost functional

L(p) :=
∫ t1

t0

1
2‖ ṗ(t)‖2g + 1

2‖Rp(t)F(p(t))‖2gdt for curves p : [t0, t1] → S. (144)

In our present paper, we derive a more general result (Theorem 3.3) for a system (1) of
coupled equations from the viewpoint of geometric mechanics on manifolds, of which
(144) is a (very) special case. In particular, we derive a necessary condition (62) that
is missing in [16], which any affinity function F has to satisfy for the assertion of
Theorem 3.3 to hold. This latter result yields an interpretation of stationary points of
the action function as solutions of the Euler–Lagrange equation (63).

It can be shown that in the case of n = 2 labels, any fitness function F indeed
fulfills condition (62) and therefore also the Euler–Lagrange equation. However, for
n > 2 labels this is no longer true, as the following counterexample demonstrates.

Suppose we have more than two labels, i.e. n > 2, and first consider the case of
m = |V| = 1 nodes, that is an uncoupled replicator equation on a single simplex.
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Define the matrix F := e2e�
1 , where ei are the standard basis vectors of R

n . Thus, the
affinity function is a linear map

F : S → Rn, p = (p1, . . . , pn)� �→ Fp = p1e2 (145)

fulfilling dFp = F and dF∗
p = F�. A short calculation using the relation Rpei =

pi (ei − p) (Einstein summation convention is not used) shows that the first coordinate
of condition (62) takes the form

(
Rp(F − F�)RpFp

)1 = −(p1)2 p2(1 − p1 − p2) �= 0, for all p ∈ S.

This example generalizes to the case m > 1 by defining the linear affinity function
F[W ] componentwise by (F[W ])i := FWi , i ∈ [m].

5 Conclusion

In this work, we generalized a previous result of uncoupled replicator equations
from [16] to the case of coupled replicator equations. The viewpoint of Lagrangian
mechanics on manifolds resulted in an interpretable Euler–Lagrange equation (63)
and provided the mathematical tools to derive condition (62) for characterizing those
affinity maps F that result in critical points of the action functional (61). Accordingly,
a constructed counterexample in terms of the specific affinity map (145) highlights
that not all affinity maps F lead to critical points. Using the Legendre transformation,
we also calculated an explicit expression for the associated Hamiltonian system in
terms of the corresponding Lagrangian system (106).

Finally, the geometric mechanics perspective enabled the insight that, ignoring a set
of starting points of measure zero, solutions to the assignment flow are reparametrized
geodesics of the Jacobi metric (121). Thus, in a certain sense, these solutions locally
connect assignment states in an optimal way by realizing a shortest path.

Our results provide a basis for exploring analogies to mathematical representa-
tions of interacting particle systems in theoretical physics in future work. In addition,
exploring transformations motivated by the underlying symplectic theory [25, 26]
which enabled to gain further insight into optimal transportation and the correspond-
ing Wasserstein geometry, might also worth to be explored from the viewpoint of
information geometry as exploited in our work. This may further enhance our under-
standing of dynamical and learning systems, such as deep neural networks, that reveal
structures in metric data.
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