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Abstract. Assignment flows are a general class of dynamical models for
context dependent data classification on graphs. These flows evolve on
the product manifold of probability simplices, called assignment mani-
fold, and are governed by a system of coupled replicator equations. In this
paper, we adopt the general viewpoint of Lagrangian mechanics on man-
ifolds and show that assignment flows satisfy the Euler-Lagrange equa-
tions associated with an action functional. Besides providing a novel in-
terpretation of assignment flows, our result rectifies the analogous state-
ment of a recent paper devoted to uncoupled replicator equations evolv-
ing on a single simplex, and generalizes it to coupled replicator equations
and assignment flows.
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1 Introduction

Assignment flows, originally introduced by [4], are a general class of dynamical
models evolving on a statistical manifold W, called assignment manifold, for
context dependent data classification on graphs. We refer to [13] for a recent
survey on assignment flows and related work.

This approach is formulated for a general graph G = (V, E) and can be
summarized as follows. Assume for every node i ∈ V some data point fi in a
metric space (F , dF ) to be given, together with a set F∗ = {f∗1 , . . . , f∗n} ⊂ F
of predefined prototypes, also called labels. Context based metric data labeling
refers to the task of assigning to each node i ∈ V a suitable label in F∗ based
on the metric distance to the given data fi and the relation between data points
encoded by the edge set E .

In order to derive a geometric representation of this problem, the discrete
label choice at each node i ∈ V is relaxed to a probability distribution over the
label space F∗ with full support, represented as a point on the manifold

S := {p ∈ Rn : p > 0 and 〈p, 1n〉 = 1}. (1.1)

Accordingly, all probabilistic label choices on the graph are encoded as a single
point W ∈ W on the assignment manifold

W := S × . . .× S (m := |V| factors), (1.2)
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where the i-th component of W = (Wk)k∈V represents the probability distri-
bution of label assignments Wi = (W 1

i , . . . ,W
n
i )> ∈ S for the node i ∈ V.

Assignment flows are dynamical systems on W for inferring probabilistic label
assignments that take the form of coupled replicator equations (see Section 4)

Ẇ (t) = RW (t)[F (W (t))], with W (t) ∈ W, (1.3)

where the initial condition W (0) ∈ W contains information about the given data
points fi ∈ F , i ∈ V. These flows are derived by information geometric principles
and usually consist of two interacting processes: non-local regularization of prob-
abilistic label assignments and gradually enforcing unambiguous local decisions
at every node i ∈ V.

In [10, Thm. 2.1], the authors claim that all uncoupled replicator equations,
i.e. ṗ = RpF (p), on a single simplex, p(t) ∈ S, satisfy the Euler-Lagrange equa-
tion associated with the cost functional (again, see Section 4 for more details)

L(p) :=

∫ t1

t0

1

2
‖ṗ(t)‖2g +

1

2
‖Rp(t)F (p(t))‖2gdt for curves p : [t0, t1]→ S. (1.4)

In this paper, we (i) generalize this result to assignment flows and (ii) show that,
in contrast to the claim of [10], the mentioned relation to extremal points of (1.4)
holds if and only if condition (1.7) is fulfilled. Unlike the approach taken in [10],
we derive this generalization from the more general viewpoint of Lagrangian
mechanics on manifolds. This results in a better interpretable version of the
Euler-Lagrange equation and leads to a characterization of critical points of the
functional in terms of the function F governing the coupled replicator dynamics
(1.3). Our main result is summarized in the following theorem.

Theorem 1. Suppose F : U → Rm×n is a fitness function defined on an open set
U ⊂ Rm×n containing W. If W : I = [t0, t1]→W is a solution of the assignment
flow (1.3), then W (t) is a critical point of the action functional

L(W ) =

∫ t1

t0

1

2
‖Ẇ (t)‖2g +

1

2

∑
i∈V

VarWi(t)

(
Fi(W (t))

)
dt, (1.5)

that is, W (t) fulfills the Euler-Lagrange equation

Dg
t Ẇ (t) =

1

2

∑
i∈V

gradgVarWi(t)

(
Fi(W (t))

)
for t ∈ I = [t0, t1], (1.6)

if and only if the fitness function F fulfills the condition

0 = RW (t) ◦
(
dF |W (t)−(dF |W (t))

∗)◦RW (t)[F (W (t))], for t ∈ I = [t0, t1], (1.7)

where (dF |W (t))
∗ is the adjoint linear operator of dF |W (t) : Rm×n → Rm×n with

respect to the Frobenius inner product and RW (t) is defined in (4.7).

The paper is organized as follows. In Section 2, we introduce our notation and
list the necessary ingredients from differential geometry. Section 3 summarizes
the required theory of Lagrangian systems on manifolds. Basic properties of
assignment manifolds and flows are presented in Section 4, followed by the proof
of Theorem 1 together with a counter example for the general claims of [10].
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2 Preliminaries

Basic Notation. In accordance with the standard notation in differential ge-
ometry, coordinates of vectors have upper indices. For any k ∈ N, we define
[k] := {1, . . . , k} ⊂ N. The standard basis of Rd is denoted by {e1, . . . , ed} and
we set 1d := (1, . . . , 1)> ∈ Rd. The notation 〈·, ·〉 is used for both, the standard
and Frobenius inner product between vectors and matrices respectively. The
identity matrix is denoted by Id ∈ Rd×d and the i-th row vector of any matrix A
by Ai. The linear dependence of a function F on its argument x is indicated by
square brackets F [x]. If x is a vector and F a matrix, then Fx is used instead of
F [x]. For a, b ∈ Rd, we denote componentwise multiplication (Hadamard prod-
uct) by a � b := Diag(a)b = (a1b1, . . . , adbd)> and division, for b > 0, simply by
a
b = (a

1

b1 , . . . ,
ad

bd
)>. Similarly, inequalities between vectors or matrices are to be

understood componentwise. We further set a�k := a�(k−1) � a with a�0 := 1d.
For later reference, we record the following statement here.

Lemma 1. Assume for each i ∈ [k] a matrix Qi ∈ Rd×d is given and let
Q : Rk×d → Rk×d be the linear map defined by (Q[X])i := QiXi for all rows
i ∈ [k]. Then, the adjoint linear map Q∗ with respect to the Frobenius inner
product is given by (Q∗[Y ])i = Qi>Yi for all i ∈ [k].

Proof. This is a direct consequence of 〈X,Q∗[Y ]〉 =
∑
i∈[k]〈Xi, (Q∗[Y ])i〉 and

〈X,Q∗[Y ]〉 = 〈Q[X], Y 〉 =
∑
i∈[k]〈QiXi, Yi〉 =

∑
i∈[k]〈Xi, Q

i>Yi〉 for arbitrary

matrices X,Y ∈ Rk×d. ut

Differential Geometry. We assume the reader is familiar with the basic con-
cepts of Riemannian and symplectic manifolds as introduced in standard text-
books, e.g. [8], [9] or [7]. The term “manifold” always means smooth mani-
fold. The tangent and cotangent bundles of a d-dimensional manifold M are
TM = ∪x∈M{x} × TxM and T ∗M = ∪x∈M{x} × T ∗xM , together with their
natural projections π : TM →M and π∗ : T ∗M →M , sending (x, v) ∈ TM and
(x, α) ∈ T ∗M to x. For local coordinates (x1, . . . , xd) on M , a tangent vector
v ∈ TxM in these coordinates takes the form v =

∑
i∈[d] v

i ∂
∂xi |x. The differential

of a smooth map between manifolds F : M → N at x ∈ M applied to a vector
v ∈ TxM is denoted by dF |x[v]. As usual (see e.g. [2, Sec. 3.5.7]), if M ⊂ V
is an embedded submanifold of a vector space V , such as Rd or Rk×d, then the
tangent space at x ∈M is identified with the set of velocities of curves through
x and, by abuse of notation, we again use TxM to denote this space

TxM = {γ̇(0) ∈ V : γ curve in M with γ(0) = x}. (2.1)

If N is another submanifold of a vector space V ′, then the differential dF |x[v]
of a map F : M → N at x ∈ M can be calculated via a curve η : (−ε, ε) → M ,
with η(0) = x and η̇(0) = v ∈ TxM , by dF |x[v] = d

dtF (η(t))|t=0. Let I ⊂ R
be an interval. If γ : I → TM is an integral curve of a vector field X on TM
(or T ∗M), i.e. γ̇(t) = X(γ(t)), then π ◦ γ : I → M (or π∗ ◦ γ) is called the base
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integral curve. For a Riemannian metric h (and similarly for a symplectic form
ω) on M , there is a canonical isomorphisms h[ : TM → T ∗M , given by sending
a tangent vector v ∈ TxM to the one-form hx(v, ·) : T ∗xM → R. Its inverse
h] : T ∗M → TM sends a one-form α ∈ T ∗xM to a unique vector vα ∈ TxM such
that α = h[(vα) = h(vα, ·) holds. In particular, the Riemannian gradient of a
function f : M → R is defined as gradh f := h](df), where df =

∑
i
∂f
∂xi dx

i is the

differential of f . Thus, for all x ∈M , gradh f(x) is the unique vector with

df |x[v] = hx(gradh f(x), v), for all v ∈ TxM. (2.2)

Furthermore, the Riemannian norm for v ∈ TxM is denoted by ‖v‖h :=
√
hx(v, v)

and the covariant derivative (with respect to the Riemannian metric h) of vector
fields along curves by Dh

t .

3 Lagrangian Systems on Manifolds

In this section, we give a brief summary of Lagrangian systems on manifolds and
mechanics on Riemannian manifolds from [1, Ch. 3].

Suppose M is a smooth manifold. Similar to Hamiltonian systems on mo-
mentum phase space T ∗M , there is a related concept on the tangent bundle
TM , interpreted as velocity phase space. In this context, a smooth function
L : TM → R is called Lagrangian. For a given point x ∈ M , denote the restric-
tion of L to the fiber TxM by Lx := L|TxM : TxM → R. The fiber derivative of
L is defined as

FL : TM → T ∗M, (x, v) 7→ FL(x, v) := dLx|v, (3.1)

where dLx|v : TxM → R is the differential of Lx at v ∈ TxM . The function L
is called a regular Lagrangian if FL is regular at all points (meaning that FL
is a submersion), which is equivalent to FL : TM → T ∗M being a local diffeo-
morphism by [1, Prop. 3.5.9]. Furthermore, L is called hyperregular Lagrangian
if FL : TM → T ∗M is a diffeomorphism. A class of hpyerregular Lagrangians,
including the Lagrangian from Theorem 1, is given in (3.6) below.

The Lagrange two-form is defined as the pullback ωL := (FL)∗ωcan of the
canonical symplectic form ωcan on the cotangent bundle T ∗M under the fiber
derivative FL. According to [1, Prop. 3.5.9], ωL is a symplectic form on T ∗M if
and only if L is a regular Lagrangian. In the following, we only consider regular
Lagrangians. The action associated to the Lagrangian L : TM → R is defined
by

A : TM → R, (x, v) 7→ FL(x, v)[v] = dLx|v[v], (3.2)

and the energy function by E := A− L, having the form

E : TM → R, (x, v) 7→ FL(x, v)[v]− L(x, v) = dLx|v[v]− L(x, v). (3.3)

The Lagrangian vector field for L is the unique vector field XE on TM satisfying

dE|(x,v)[u] = ωL,(x,v)(XE , u) for all (x, v) ∈ TxM and u ∈ T(x,v)TM, (3.4)
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that is XE = ω]L(dE). A curve γ(t) = (x(t), v(t)) on TM is an integral curve of
XE if v(t) = ẋ(t) and the classical Euler-Lagrange equations in local coordinates
are satisfied

d

dt

(
∂L

∂vi
(
x(t), ẋ(t)

))
=
∂L

∂xi
(
x(t), ẋ(t)

)
for all i ∈ [n]. (3.5)

Let γ : I → TM be any integral curve of XE . Because of d
dtE(γ) = dE|γ [γ̇] =

dE|γ [XE(γ)] = ωL,γ(XE(γ), XE(γ)) = 0, the energy E is constant along γ.
Now, assume (M,h) is a Riemannian manifold. Suppose a smooth function

G : M → R, called potential, is given and consider the Lagrangian

L(x, v) :=
1

2
‖v‖2h −G(x), ∀(x, v) ∈ TM. (3.6)

It then follows (see [1, Sec. 3.7] or by direct computation) that the fiber derivative
of L is the canonical isomorphism FL = h[ : TM → T ∗M . Hence, the Lagrangian
L is hyperregular with action A and energy E = A− L given by

A(x, v) = ‖v‖2h and E(x, v) =
1

2
‖v‖2h +G(x) for all (x, v) ∈ TM. (3.7)

Proposition 1. ([1, Prop. 3.7.4]). With L as defined in (3.6) on the Rie-
mannian manifold (M,h), the curve γ : I → TM with γ(t) = (x(t), v(t)) is an
integral curve of the Lagrangian vector field XE, i.e. satisfies the Euler-Lagrange
equation, if and only if the base integral curve π ◦ γ = x : I →M satisfies

Dh
t ẋ(t) = − gradhG(x(t)). (3.8)

4 Mechanics of Assignment Flows

We now return to the metric data labeling task on a graph G = (V, E) from the
beginning of this paper. In this section, we consistently use the notation m = |V|
and n = |F∗| for the number of nodes and labels respectively.

We first give a brief summary of the most important properties of the statis-
tical manifold W, followed by a short description of assignment flows. A more
detailed overview can be found in the original work [4] or the recent survey [13].
After this, we apply the general theory of Lagrangian Systems from Section 3 to
prove our main result stated as Theorem 1.

4.1 Assignment Manifold and Flows

Assignment Manifold. In the following, we always identify the manifold W
from (1.2) with its matrix embedding

W = {W ∈ Rm×n : W > 0 and W1n = 1m}, (4.1)

by sending the i-th component Wi of W = (Wk)k∈V ∈ W to the i-th row of a
matrix in Rm×n. Therefore, points W ∈ W are row stochastic matrices with full
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support, called assignment matrices, with row vectors Wi = (W 1
i , . . . ,W

n
i )> ∈ S

representing the relaxed label assignment for every i ∈ [m]. With the identifica-
tion from (2.1), the tangent space of S ⊂ Rn from (1.1) at any point p ∈ S is
identified as

TpS = {v ∈ Rn : 〈v,1n〉 = 0} =: T. (4.2)

Hence, TpS is represented by the same vector space T for all p ∈ S. In partic-
ular, the tangent bundle is trivial TS = S × T . Viewing W as an embedded
submanifold of Rm×n by (4.1) and using the identification (2.1) for the tangent
space, we identify

TWW = {V ∈ Rm×n : V 1n = 0} =: T , for all W ∈ W ⊂ Rm×n. (4.3)

With this identification, the tangent bundle is also trivial TW =W × T .
From an information geometric viewpoint, e.g. [3] or [5], the Fisher-Rao (in-

formation) metric is a “canonical” Riemannian structure on S, given by

gp(u, v) :=
〈
u,Diag

(
1
p

)
v
〉
, for all p ∈ S, u, v ∈ T = TpS. (4.4)

Next, we define two important matrices, the orthogonal projection of Rn onto T
with respect to the Euclidean inner product

PT := In − 1
n1n1n ∈ Rn×n viewed as PT : Rn → T (4.5)

and for every p ∈ S the replicator matrix

Rp := Diag(p)− pp> ∈ Rn×n viewed as Rp : Rn → T. (4.6)

A simple calculation shows that Rp = RpPT = PTRp as well as ker(Rp) = R1n
hold for all p ∈ S. Furthermore, if Rp is restricted to the linear subspace T ⊂ Rn,
then Rp|T : T → T is a linear isomorphism with inverse given by [12, Lem. 3.1]

(Rp|T )−1(u) = PT Diag
(
1
p

)
u, for all u ∈ T = TpS. (4.7)

Now, suppose J : S → R is a smooth function defined on some open neighborhood
U of S, e.g. U = Rn>0. Then, according to [5, Prop. 2.2], the Riemannian gradient
is given by gradg J(p) = Rp∇J(p), for all p ∈ Rn, where ∇J is the usual
gradient of J on U ⊂ Rn.

The product metric, again denoted by g, defined by

gW (U, V ) := Σi∈[m]gWi(Ui, Vi), for all W ∈ W, U, V ∈ T = TWW (4.8)

turns W into a Riemannian manifold. The orthogonal projection PT : Rm×n →
T , X 7→ PT [X], with respect to the Frobenius inner product of matrices and,
for each W ∈ W, the replicator operator RW : Rm×n → T , X 7→ RW [X], are
defined row-wise by

(PT [X])i := PTXi and (RW [X])i := RWiXi for all X ∈ T , i ∈ [m]. (4.9)

As a consequence, if a smooth function J : W → R is defined on some open
neighborhood of W, then the Riemannian gradient is given by

gradg J(W ) = RW [∇J(W )] ∈ TWW = T , for all W ∈ W, (4.10)

where ∇J(W ) ∈ Rm×n is the unique matrix fulfilling dJ |W [V ] = 〈∇J(W ), V 〉
for all V ∈ Rm×n. Therefore, (∇J(W ))ij = ∂J/∂W j

i , for all i ∈ [m], j ∈ [n].
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Assignment Flows. The replicator equation is a well known differential equa-
tion for modeling various processes in fields such as biology, economy and evolu-
tionary game dynamics, see [6] or [11]. In a typical game dynamics scenario, as
described in [6], the labels correspond to different strategies of an agent playing
a game and p = (p1, . . . , pn)> ∈ S are the probabilities pj of playing the j-th
strategy, j ∈ [n]. The fitness function F : S → Rn, also called affinity measure,
represents the payoff F j(p) for each strategy j depending on the state p ∈ S. The
replicator equation is a consequence of the assumption that the growth rate ṗj/pj

is given by the difference between the payoff F j(p) for strategy j and the average
payoff

∑
k∈[n] p

kF k(p) = 〈F (p), p〉, resulting in ṗj = pj(F j(p) − 〈F (p), p〉). In

vector notation, this can be written using the replicator matrix Rp from (4.6) as

ṗ = p � F (p)− 〈F (p), p〉p = RpF (p), for all p ∈ S.

The replicator dynamics therefore describes a selection process: over time, the
agent selects successful strategies more often.

From this game dynamics perspective, assignment flows for data labeling can
be seen as a game of interacting agents, where each node i ∈ V in the graph
represents one agent and the strategies are the labels in F∗. The fitness function
(payoff) for node i ∈ V is a function Fi : W → Rn depending on the global label
assignments W ∈ W and thereby coupling the label decisions between different
nodes. Thus, for each i ∈ V the process of label selection on the corresponding
simplex S is described by the replicator equation

Ẇi = RWi
Fi(W ), Wi(t) ∈ S,

coupled through the Fi(W ). In order to express this system of coupled replicator
equations in a more compact way, we define the matrix valued fitness function
F : W → Rm×n with the i-th row given by (F (W ))i := Fi(W ). Together with
the replicator operator RW on W from (4.9), the coupled replicator equations
are compactly expressed through (1.3). We again refer the reader to the survey
[13] for applications of this framework to data labeling and related work.

4.2 Proof of Theorem 1

Let I := [t0, t1] and suppose F : U → Rm×n is a fitness function defined on an
open set U ⊂ Rm×n containing W. Since the squared Riemannian norm and the
replicator operator are also defined on W, the functional (1.4) from [10] can be
easily extended to curves W : I → W by simply replacing every occurrence of
p(t) with W (t), resulting in

L(W ) :=

∫ t1

t0

1

2
‖Ẇ (t)‖2g +

1

2
‖RW (t)[F (W (t))]‖2gdt. (4.11)

The term ‖RW (t)[F (W (t))]‖2g can be rewritten in a slightly more interpretable
way. For this, we view the inner product between a vector x ∈ Rn and a point
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p ∈ S as the expected value 〈x, p〉 = Ep[x] and similarly 〈x�2, p〉 = Ep[x2]. Thus,
it is reasonable to talk about the variance of x with respect to p, given by

Varp(x) = Ep[x
2]− (Ep[x])2 = 〈x�2, p〉 − 〈x, p〉2. (4.12)

Lemma 2. Let p ∈ S and x ∈ Rn, then ‖Rpx‖2g = 〈x,Rpx〉 = Varp(x). Thus, for
W ∈ W and X ∈ Rm×n, we have ‖RW [X]‖2g =

∑
i∈V VarWi

(Xi) = 〈X,RW [X]〉.

Proof. Since PT is the orthogonal projection and Rpx ∈ T , the squared norm
of the Fisher-Rao metric (4.4) is given by ‖Rpx‖2g = 〈Rpx, PT Diag(1/p)Rpx〉.
As a result of Rp = Rp|TPT and the formula for the inverse of Rp|T from (4.7),
we have PT Diag

(
1
p

)
Rpx = PT Diag

(
1
p

)
Rp|TPTx = PTx. Therefore, ‖Rp‖2g =

〈Rpx, PTx〉 = 〈Rpx, x〉 follows. As a consequence of Rpx = p�x−〈p, x〉p we also
directly get 〈x,Rpx〉 = 〈x, p � x − 〈p, x〉p〉 = 〈x�2, p〉 − 〈x, p〉2 = Varp(x). The
statement for ‖RW [X]‖2g is a consequence of the product Riemannian metric
(4.8) on W and the definition of RW in (4.9) as a product map. ut

The result of the previous lemma explains the expression for L in Theorem 1.
With this, we are in the regime of Lagrangian mechanics on Riemannian mani-
folds from Section 3 with M =W, Riemannian metric h = g and potential

G : W → R, G(W ) := −1

2
‖RW [F (W )]‖2g = −1

2

∑
k∈V

VarWk
(Fk(W )). (4.13)

For (W,V ) ∈ TW =W ×T , the corresponding Lagrangian (3.6) takes the form

L(W,V ) =
1

2
‖V ‖2g −G(W ) =

1

2
‖V ‖2g +

1

2

∑
k∈V

VarWk
(Fk(W )).

Therefore, the Euler-Lagrange equation (1.6) in Theorem 1 is a direct conse-
quence of Proposition 1. The corresponding energy function (3.7) takes the form
E(W (t), Ẇ (t)) = 1

2‖Ẇ (t)‖2g− 1
2‖RW (t)[F (W (t))]‖2g and is constant along curves

W : I → W fulfilling the Euler-Lagrange equation (1.6). However, due to this
specific form of the energy, it follows that E(W (t), Ẇ (t)) = 0 holds for all as-
signment flows (1.3), irrespective of whether or not the Euler-Lagrange equation
is satisfied. This fact was also reported in [10] for the uncoupled replicator dy-
namics on a single simplex.

In the remaining part, we derive the characterization (1.7) for which F the as-
signment flow fulfills the Euler-Lagrange equation (1.6). We start by considering
RW [F (W )] as a function of W ∈ W, denoted by

R[F ] : W → T , W 7→ R[F ](W ) := RW [F (W )].

In order to calculate the differential of R[F ], we define the n× n-matrix

B(p, x) := Diag(x)− 〈p, x〉In − px>, for p ∈ S, x ∈ Rn (4.14)

and the linear map B(W,X) : Rm×n → Rm×n with i-th row

(B(W,X)[V ])i := B(Wi, Xi)Vi, for W ∈ W, X ∈ Rm×n (4.15)



On the Geometric Mechanics of Assignment Flows 9

Lemma 3. With the identifications TWW = T and TRW [F (W )]T = T , the dif-
ferential of R[F ] is a linear map dR[F ]|W : T → T , given by

dR[F ]
∣∣
W

[V ] = RW ◦ dF |W [V ] + B(W,F (W ))[V ], for V ∈ T .

Proof. A short calculation shows 〈B(Wi, Fi(W ))Vi,1n〉 = 0 for all i ∈ V, proving
that B(W,X)[V ] ∈ T holds. Let η : (−ε, ε)→W be a curve with η(0) = W and
η̇(0) = V . Keeping in mind Rp = Diag(p)− pp>, we obtain for all rows i ∈ V(
dR[F ]|W [V ]

)
i

= d
dtRηi(t)Fi(η(t))

∣∣
t=0

= d
dtRηi(t)

∣∣
t=0

Fi(W ) +RWi

d
dtFi(η(t))

∣∣
t=0

=
(

Diag(Vi)− ViW>i −WiV
>
i

)
Fi(W ) +

(
RW [ ddtF (η(t))

∣∣
t=0

]
)
i

=
(
B(W,F (W ))[V ]

)
i
+
(
RW ◦ dF |W [V ]

)
i
,

where Diag(Vi)Fi(W ) = Diag(Fi(W ))Vi and V >i Fi(W ) = Fi(W )>Vi was used
for the last equality. ut

Next, we consider the acceleration of curves on S and W with respect to the
Riemannian metric g, that is the covariant derivative Dg

t of their velocities. Due
to TS = S×T , we can view the velocity of a curve p : I → S as a map ṗ : I → T .
As T is a vector space, we can also consider its second derivative p̈ : I → T . Using
the expression from [5, Eq. (2.60)] (with α set to 0), the acceleration Dg

t ṗ of p
is related to p̈ by

Dg
t ṗ(t) = p̈(t)− 1

2

(ṗ(t))�2

p(t)
+

1

2
‖ṗ(t)‖2gp(t) = p̈(t)− 1

2
A(p(t), ṗ(t)),

with A : S×T → T defined as A(p, v) := 1
pv
�2−‖v‖2gp. Similarly, as a consequence

of TW = W × T , the velocity of a curve W : I → W can be viewed as a map
Ẇ : I → T , allowing for the second derivative Ẅ . Since the covariant derivative
on a product manifold equipped with a product metric is the componentwise
application of the individual covariant derivatives, the acceleration of W (t) on
W has the form

Dg
t Ẇ (t) = Ẅ (t)− 1

2
A(W (t), Ẇ (t)), (4.16)

with i-th row of A : W×T → T given by (A(W,X))i := A(Wi, Xi) from above.

Lemma 4. Suppose W : I → S is a solution of the assignment flow (1.3). Then,
the acceleration of W (t), that is the covariant derivative of Ẇ (t), takes the form
Dg
t Ẇ (t) = RW (t) ◦ dF |W (t) ◦ RW (t)[F (W (t))] + 1

2A
(
W (t),RW (t)[F (W (t))]

)
.

Proof. Since W (t) is a solution of Ẇ (t) = RW (t)[F (W (t))], the second derivative

Ẅ = d
dtẆ (t) takes the form (to simplify notation we drop the dependence on t)

Ẅ =
d

dt
RW [F (W )] = dR[F ]|W [Ẇ ]

Lem. 3
= RW ◦ dF |W [Ẇ ] + B(W,F (W ))[Ẇ ]

The first term on the right-hand side equals RW ◦ dF |W ◦ RW [F (W )] and the
second term B(W,F (W ))[RW [F (W )]], where B is defined in terms of the matrix
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B from (4.14). Thus, consider B(p, x)Rpx, for p ∈ S and x ∈ Rn. The relations
〈x,Rpx〉 = ‖Rpx‖2g from Lemma 2 and Rpx = p�(x−〈p, x〉1n) give B(p, x)Rpx =

(x − 〈p, x〉1n) � Rpx − 〈x,Rpx〉p = 1
p (Rpx)�2 − ‖Rpx‖2gp = A(p,RpX). This

implies B(W,F (W ))[RW [F (W )]] = A(W,RW [F (W )]) and results in the identity
Ẅ = RW ◦ dF |W ◦ RW [F (W )] + A

(
W,RW [F (W ))]

)
. Plugging this expression

for Ẅ into the one for Dg
t Ẇ in (4.16) finishes the proof. ut

In the final step, we calculate the Riemannian gradient for the potential G
from (4.13). Since F is defined on an open set U ⊂ Rm×n, with W ⊂ U , we
identify TXU = Rm×n and TF (X)Rm×n = Rm×n for all X ∈ U . Accordingly, the
differential of F at X is a linear map dF |X : Rm×n → Rm×n and its adjoint with
respect to the Frobenius inner product on Rm×n are denoted by (dF |X)∗.

Lemma 5. The Riemannian gradient of the potential G from (4.13) is given by
gradgG(W ) = −RW ◦ (dF |W )∗ ◦RW [F (W )]− 1

2A(W,RW [F (W )]), for W ∈ W

Proof. Let W ∈ W. Since the i-th row of RW is given by symmetric matrices
RWi

= Diag(Wi) −WiW
>
i , Lemma 1 implies R∗W = RW . Next, we calculate

an expression for ∇G(W ). For this, assume V ∈ Rm×n is arbitrary and let
η : (−ε, ε)→W be a curve with η(0) = W and η̇(0) = V . Then

dG|W [V ] =
d

dt
G(η(t))|t=0

Lem. 2
= −1

2

d

dt

〈
F (η(t)),Rη(t)[F (η(t))]

〉∣∣∣
t=0

= −1

2

〈
dF |W [V ],RW [F (W )]

〉
− 1

2

〈
F (W ), dR[F ]|W [V ]

〉
.

With the expression for dR[F ]|W from Lemma 3 together with R∗W = RW , the
second inner product takes the form〈
F (W ),dR[F ]|W [V ]

〉
=
〈
F (W ),RW ◦ dF |W [V ]

〉
+
〈
F (W ),B(W,F (W ))[V ]

〉
=
〈
(dF |W )∗ ◦ RW [F (W )], V

〉
+
〈
B∗(W,F (W ))[F (W )], V

〉
.

Substituting this formula back into the above expression for dG|W together with〈
dF |W [V ],RW [F (W )]

〉
=
〈
V, (dF |W )∗ ◦RW [F (W )]

〉
for the first inner product,

results in dG|W [V ] =
〈
− (dF |W )∗ ◦ RW [F (W )] − 1

2

〈
B∗(W,F (W ))[F (W )], V

〉
.

Since V is arbitrary, ∇G(W ) = −(dF |W )∗ ◦RW [F (W )]− 1
2B
∗(W,F (W ))[F (W )]

follows. Due to (4.10), the Riemannian gradient is given by

gradg G(W ) = −RW ◦ (dF |W )∗ ◦ RW [F (W )]− 1

2
RW [B∗(W,F (W ))[F (W )]].

Because B is defined in terms of the matrix B from (4.14), the adjoint B∗ is
determined by B> through Lemma 1. For p ∈ S and x ∈ Rn, we have

RpB
>(p, x)x = Rp

(
Diag(x)− 〈p, x〉In − xp>

)
x = Rp

(
x�2 − 2〈p, x〉x

)
= p � x�2 − 〈x�2, p〉p− 2〈p, x〉x � p+ 2〈p, x〉2p
=
(
p � x�2 − 2〈p, x〉x � p+ 〈p, x〉p

)
−
(
〈x�2, p〉 − 〈p, x〉

)
p

=
1

p

(
p � x− 〈p, x〉p

)�2 − ‖Rpx‖2gp = A(p,Rpx),
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where the relation 〈p, x�2〉 − 〈p, x〉2 = Varp(x) = ‖Rpx‖2g from (4.12) and
Lemma 2 was used in the last line. Therefore, RW [B∗(W,F (W ))[F (W )]] =
A(W,RW [F (W )]) holds which proves the statement. ut

Proof (Theorem 1). Suppose W (t) is a solution of the assignment flow (1.3). Due
to Lemma 4 and 5, the expression for the acceleration of W (t) and the Rieman-
nian gradient of G at W (t) both contain the term 1

2A(W (t),RW (t)[F (W (t))])
which yields the relation

Dg
t Ẇ (t)− 1

2

∑
k∈V

gradgVarWk
(Fk(W ))

(4.13)
= Dg

t Ẇ (t) + gradgG(W )

= RW (t) ◦ dF |W (t) ◦ RW (t)[F (W (t))]−RW (t) ◦ (dF |W (t))
∗ ◦ RW (t)[F (W (t))]

= RW (t) ◦
(
dF |W (t) − (dF |W (t))

∗) ◦ RW (t)F (W (t)).

As a consequence, the characterization of F in (1.7) is equivalent to the Euler-
Lagrange equation (1.6). ut

Remark 1. As can be seen from the expression of Dg
tW (t) in (4.16), the Euler-

Lagrange equation is a second-order differential equation. The reason why all
second- and first-order terms disappear in the condition (1.7) for F is due to the
fact that any solution of the assignment flow satisfies Ẇ (t) = RW (t)[F (W (t)],

allowing to replace any occurrences of Ẅ and Ẇ by alternative expressions in
terms of the replicator operator. This basically is the statement of Lemma 4.

4.3 Counterexample

It can be shown that in the case of n = 2 labels any fitness function F fulfills
condition (1.7) and therefore also the Euler-Lagrange equation. However, for
n > 2 labels this is no longer true in general, as the example below demonstrates.
Nevertheless, a large class of fitness functions always fulfilling condition (1.7) is
given by those defined as the gradient F = ∇β of an objective function β. Since
the corresponding derivative dF |x = Hessβ(x) is self-adjoint, the condition is
trivially fulfilled.

For the counterexample, assume n > 2. We first consider the case of m =
|V| = 1 nodes, that is an uncoupled replicator equation on a single simplex.
Define the matrix F := e2e

>
1 , where ei are the standard basis vectors of Rn. Thus,

the fitness is a linear map p = (p1, . . . , pn)> 7→ Fp = p1e2, fulfilling dF |p = F
and (dF |p)∗ = F>. After a short calculation, using the relation Rpei = pi(ei−p)
(Einstein summation convention is not used), the first coordinate of condition
(1.7) takes the form(

Rp(F − F>)RpFp
)1

= −(p1)2p2(1− p1 − p2) 6= 0, for all p ∈ S.

In the more general case m > 1, define the i-th row of the linear fitness F [W ]
by (F [W ])i := FWi. Since (F∗[W ])i = F>Wi by Lemma 1, the counterexample
also extends to general coupled replicator equations on W.
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5 Conclusion

Starting from the viewpoint of Lagrangian mechanics on manifolds, we showed
that assignment flows solve the Euler-Lagrange equations associated with an
action functional. We further characterized those solutions in terms of the fitness
function F , which allowed to rectify the result of [10] for uncoupled replicator
equations on a single simplex.

Regarding future work, there is a relation to Hamiltonian mechanics via the
Legendre transformation, which enables to analyze assignment flows as systems
of interacting particles from a physics point of view. There also exists a connec-
tion to geodesic motion for a modified Riemannian metric on W, the so called
Jacobi metric, that provides yet another way of characterizing assignment flows.

Acknowledgments. This work is supported by Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence Strat-
egy EXC-2181/1 - 390900948 (the Heidelberg STRUCTURES Cluster of Ex-
cellence). PA was also supported by the Transregional Colloborative Research
Center CRC/TRR 191 (281071066).

References

1. Abraham, R., Marsden, J.: Foundations of Mechanics. Addison-Wesley Publishing
Company, Inc. , Redwood City, 2 edn. (1987)

2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Man-
ifolds. Princeton University Press (2008)

3. Amari, S.i., Nagaoka, H.: Methods of Information Geometry, vol. 191. American
Mathematical Soc. (2007)

4. Aström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image Labeling by Assignment.
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