On the Geometric Mechanics of Assignment Flows for Metric Data Labeling

Fabrizio Savarino ${ }^{1}$, Peter Albers ${ }^{2}$, and Christoph Schnörr ${ }^{1}$
${ }^{1}$ Institute of Applied Mathematics, Heidelberg University, Germany
${ }^{2}$ Mathematical Institute, Heidelberg University, Germany
fabrizio.savarino@iwr.uni-heidelberg.de

Abstract

Assignment flows are a general class of dynamical models for context dependent data classification on graphs. These flows evolve on the product manifold of probability simplices, called assignment manifold, and are governed by a system of coupled replicator equations. In this paper, we adopt the general viewpoint of Lagrangian mechanics on manifolds and show that assignment flows satisfy the Euler-Lagrange equations associated with an action functional. Besides providing a novel interpretation of assignment flows, our result rectifies the analogous statement of a recent paper devoted to uncoupled replicator equations evolving on a single simplex, and generalizes it to coupled replicator equations and assignment flows.

Keywords: action functional • assignment flows • image labeling • replicator equation • evolutionary game dynamics

1 Introduction

Assignment flows, originally introduced by [4], are a general class of dynamical models evolving on a statistical manifold \mathcal{W}, called assignment manifold, for context dependent data classification on graphs. We refer to [13] for a recent survey on assignment flows and related work.

This approach is formulated for a general graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ and can be summarized as follows. Assume for every node $i \in \mathcal{V}$ some data point f_{i} in a metric space $\left(\mathcal{F}, d_{\mathcal{F}}\right)$ to be given, together with a set $\mathcal{F}_{*}=\left\{f_{1}^{*}, \ldots, f_{n}^{*}\right\} \subset \mathcal{F}$ of predefined prototypes, also called labels. Context based metric data labeling refers to the task of assigning to each node $i \in \mathcal{V}$ a suitable label in \mathcal{F}_{*} based on the metric distance to the given data f_{i} and the relation between data points encoded by the edge set \mathcal{E}.

In order to derive a geometric representation of this problem, the discrete label choice at each node $i \in \mathcal{V}$ is relaxed to a probability distribution over the label space \mathcal{F}_{*} with full support, represented as a point on the manifold

$$
\begin{equation*}
\mathcal{S}:=\left\{p \in \mathbb{R}^{n}: p>0 \text { and }\left\langle p, \mathbb{1}_{n}\right\rangle=1\right\} . \tag{1.1}
\end{equation*}
$$

Accordingly, all probabilistic label choices on the graph are encoded as a single point $W \in \mathcal{W}$ on the assignment manifold

$$
\begin{equation*}
\mathcal{W}:=\mathcal{S} \times \ldots \times \mathcal{S} \quad(m:=|\mathcal{V}| \text { factors }) \tag{1.2}
\end{equation*}
$$

where the i-th component of $W=\left(W_{k}\right)_{k \in \mathcal{V}}$ represents the probability distribution of label assignments $W_{i}=\left(W_{i}^{1}, \ldots, W_{i}^{n}\right)^{\top} \in \mathcal{S}$ for the node $i \in \mathcal{V}$. Assignment flows are dynamical systems on \mathcal{W} for inferring probabilistic label assignments that take the form of coupled replicator equations (see Section 4)

$$
\begin{equation*}
\dot{W}(t)=\mathcal{R}_{W(t)}[F(W(t))], \quad \text { with } \quad W(t) \in \mathcal{W} \tag{1.3}
\end{equation*}
$$

where the initial condition $W(0) \in \mathcal{W}$ contains information about the given data points $f_{i} \in \mathcal{F}, i \in \mathcal{V}$. These flows are derived by information geometric principles and usually consist of two interacting processes: non-local regularization of probabilistic label assignments and gradually enforcing unambiguous local decisions at every node $i \in \mathcal{V}$.

In [10, Thm. 2.1], the authors claim that all uncoupled replicator equations, i.e. $\dot{p}=R_{p} F(p)$, on a single simplex, $p(t) \in \mathcal{S}$, satisfy the Euler-Lagrange equation associated with the cost functional (again, see Section 4 for more details)

$$
\begin{equation*}
\mathcal{L}(p):=\int_{t_{0}}^{t_{1}} \frac{1}{2}\|\dot{p}(t)\|_{g}^{2}+\frac{1}{2}\left\|R_{p(t)} F(p(t))\right\|_{g}^{2} d t \quad \text { for curves } p:\left[t_{0}, t_{1}\right] \rightarrow \mathcal{S} \tag{1.4}
\end{equation*}
$$

In this paper, we (i) generalize this result to assignment flows and (ii) show that, in contrast to the claim of [10], the mentioned relation to extremal points of (1.4) holds if and only if condition (1.7) is fulfilled. Unlike the approach taken in [10], we derive this generalization from the more general viewpoint of Lagrangian mechanics on manifolds. This results in a better interpretable version of the Euler-Lagrange equation and leads to a characterization of critical points of the functional in terms of the function F governing the coupled replicator dynamics (1.3). Our main result is summarized in the following theorem.

Theorem 1. Suppose $F: U \rightarrow \mathbb{R}^{m \times n}$ is a fitness function defined on an open set $U \subset \mathbb{R}^{m \times n}$ containing \mathcal{W}. If $W: I=\left[t_{0}, t_{1}\right] \rightarrow \mathcal{W}$ is a solution of the assignment flow (1.3), then $W(t)$ is a critical point of the action functional

$$
\begin{equation*}
\mathcal{L}(W)=\int_{t_{0}}^{t_{1}} \frac{1}{2}\|\dot{W}(t)\|_{g}^{2}+\frac{1}{2} \sum_{i \in \mathcal{V}} \operatorname{Var}_{W_{i}(t)}\left(F_{i}(W(t))\right) d t \tag{1.5}
\end{equation*}
$$

that is, $W(t)$ fulfills the Euler-Lagrange equation

$$
\begin{equation*}
D_{t}^{g} \dot{W}(t)=\frac{1}{2} \sum_{i \in \mathcal{V}} \operatorname{grad}^{g} \operatorname{Var}_{W_{i}(t)}\left(F_{i}(W(t))\right) \quad \text { for } t \in I=\left[t_{0}, t_{1}\right] \tag{1.6}
\end{equation*}
$$

if and only if the fitness function F fulfills the condition

$$
\begin{equation*}
0=\mathcal{R}_{W(t)} \circ\left(\left.d F\right|_{W(t)}-\left(\left.d F\right|_{W(t)}\right)^{*}\right) \circ \mathcal{R}_{W(t)}[F(W(t))], \text { for } t \in I=\left[t_{0}, t_{1}\right] \tag{1.7}
\end{equation*}
$$

where $\left(\left.d F\right|_{W(t)}\right)^{*}$ is the adjoint linear operator of $\left.d F\right|_{W(t)}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}$ with respect to the Frobenius inner product and $\mathcal{R}_{W(t)}$ is defined in (4.7).

The paper is organized as follows. In Section 2, we introduce our notation and list the necessary ingredients from differential geometry. Section 3 summarizes the required theory of Lagrangian systems on manifolds. Basic properties of assignment manifolds and flows are presented in Section 4, followed by the proof of Theorem 1 together with a counter example for the general claims of [10].

2 Preliminaries

Basic Notation. In accordance with the standard notation in differential geometry, coordinates of vectors have upper indices. For any $k \in \mathbb{N}$, we define $[k]:=\{1, \ldots, k\} \subset \mathbb{N}$. The standard basis of \mathbb{R}^{d} is denoted by $\left\{e_{1}, \ldots, e_{d}\right\}$ and we set $\mathbb{1}_{d}:=(1, \ldots, 1)^{\top} \in \mathbb{R}^{d}$. The notation $\langle\cdot, \cdot\rangle$ is used for both, the standard and Frobenius inner product between vectors and matrices respectively. The identity matrix is denoted by $I_{d} \in \mathbb{R}^{d \times d}$ and the i-th row vector of any matrix A by A_{i}. The linear dependence of a function F on its argument x is indicated by square brackets $F[x]$. If x is a vector and F a matrix, then $F x$ is used instead of $F[x]$. For $a, b \in \mathbb{R}^{d}$, we denote componentwise multiplication (Hadamard product) by $a \diamond b:=\operatorname{Diag}(a) b=\left(a^{1} b^{1}, \ldots, a^{d} b^{d}\right)^{\top}$ and division, for $b>0$, simply by $\frac{a}{b}=\left(\frac{a^{1}}{b^{1}}, \ldots, \frac{a^{d}}{b^{d}}\right)^{\top}$. Similarly, inequalities between vectors or matrices are to be understood componentwise. We further set $a^{\diamond k}:=a^{\diamond(k-1)} \diamond a$ with $a^{\diamond 0}:=\mathbb{1}_{d}$. For later reference, we record the following statement here.

Lemma 1. Assume for each $i \in[k]$ a matrix $Q^{i} \in \mathbb{R}^{d \times d}$ is given and let $\mathcal{Q}: \mathbb{R}^{k \times d} \rightarrow \mathbb{R}^{k \times d}$ be the linear map defined by $(\mathcal{Q}[X])_{i}:=Q^{i} X_{i}$ for all rows $i \in[k]$. Then, the adjoint linear map \mathcal{Q}^{*} with respect to the Frobenius inner product is given by $\left(\mathcal{Q}^{*}[Y]\right)_{i}=Q^{i \top} Y_{i}$ for all $i \in[k]$.

Proof. This is a direct consequence of $\left\langle X, \mathcal{Q}^{*}[Y]\right\rangle=\sum_{i \in[k]}\left\langle X_{i},\left(\mathcal{Q}^{*}[Y]\right)_{i}\right\rangle$ and $\left\langle X, \mathcal{Q}^{*}[Y]\right\rangle=\langle\mathcal{Q}[X], Y\rangle=\sum_{i \in[k]}\left\langle Q^{i} X_{i}, Y_{i}\right\rangle=\sum_{i \in[k]}\left\langle X_{i}, Q^{i \top} Y_{i}\right\rangle$ for arbitrary matrices $X, Y \in \mathbb{R}^{k \times d}$.

Differential Geometry. We assume the reader is familiar with the basic concepts of Riemannian and symplectic manifolds as introduced in standard textbooks, e.g. [8], [9] or [7]. The term "manifold" always means smooth manifold. The tangent and cotangent bundles of a d-dimensional manifold M are $T M=\cup_{x \in M}\{x\} \times T_{x} M$ and $T^{*} M=\cup_{x \in M}\{x\} \times T_{x}^{*} M$, together with their natural projections $\pi: T M \rightarrow M$ and $\pi^{*}: T^{*} M \rightarrow M$, sending $(x, v) \in T M$ and $(x, \alpha) \in T^{*} M$ to x. For local coordinates $\left(x^{1}, \ldots, x^{d}\right)$ on M, a tangent vector $v \in T_{x} M$ in these coordinates takes the form $v=\left.\sum_{i \in[d]} v^{i} \frac{\partial}{\partial x^{2}}\right|_{x}$. The differential of a smooth map between manifolds $F: M \rightarrow N$ at $x \in M$ applied to a vector $v \in T_{x} M$ is denoted by $\left.d F\right|_{x}[v]$. As usual (see e.g. [2, Sec. 3.5.7]), if $M \subset V$ is an embedded submanifold of a vector space V, such as \mathbb{R}^{d} or $\mathbb{R}^{k \times d}$, then the tangent space at $x \in M$ is identified with the set of velocities of curves through x and, by abuse of notation, we again use $T_{x} M$ to denote this space

$$
\begin{equation*}
T_{x} M=\{\dot{\gamma}(0) \in V: \gamma \text { curve in } M \text { with } \gamma(0)=x\} . \tag{2.1}
\end{equation*}
$$

If N is another submanifold of a vector space V^{\prime}, then the differential $d F \mid{ }_{x}[v]$ of a map $F: M \rightarrow N$ at $x \in M$ can be calculated via a curve $\eta:(-\varepsilon, \varepsilon) \rightarrow M$, with $\eta(0)=x$ and $\dot{\eta}(0)=v \in T_{x} M$, by $\left.d F\right|_{x}[v]=\left.\frac{d}{d t} F(\eta(t))\right|_{t=0}$. Let $I \subset \mathbb{R}$ be an interval. If $\gamma: I \rightarrow T M$ is an integral curve of a vector field X on $T M$ (or $T^{*} M$), i.e. $\dot{\gamma}(t)=X(\gamma(t))$, then $\pi \circ \gamma: I \rightarrow M$ (or $\pi^{*} \circ \gamma$) is called the base
integral curve. For a Riemannian metric h (and similarly for a symplectic form ω) on M, there is a canonical isomorphisms $h^{b}: T M \rightarrow T^{*} M$, given by sending a tangent vector $v \in T_{x} M$ to the one-form $h_{x}(v, \cdot): T_{x}^{*} M \rightarrow \mathbb{R}$. Its inverse $h^{\sharp}: T^{*} M \rightarrow T M$ sends a one-form $\alpha \in T_{x}^{*} M$ to a unique vector $v_{\alpha} \in T_{x} M$ such that $\alpha=h^{b}\left(v_{\alpha}\right)=h\left(v_{\alpha}, \cdot\right)$ holds. In particular, the Riemannian gradient of a function $f: M \rightarrow \mathbb{R}$ is defined as $\operatorname{grad}^{h} f:=h^{\sharp}(d f)$, where $d f=\sum_{i} \frac{\partial f}{\partial x^{i}} d x^{i}$ is the differential of f. Thus, for all $x \in M$, $\operatorname{grad}^{h} f(x)$ is the unique vector with

$$
\begin{equation*}
\left.d f\right|_{x}[v]=h_{x}\left(\operatorname{grad}^{h} f(x), v\right), \quad \text { for all } v \in T_{x} M \tag{2.2}
\end{equation*}
$$

Furthermore, the Riemannian norm for $v \in T_{x} M$ is denoted by $\|v\|_{h}:=\sqrt{h_{x}(v, v)}$ and the covariant derivative (with respect to the Riemannian metric h) of vector fields along curves by D_{t}^{h}.

3 Lagrangian Systems on Manifolds

In this section, we give a brief summary of Lagrangian systems on manifolds and mechanics on Riemannian manifolds from [1, Ch. 3].

Suppose M is a smooth manifold. Similar to Hamiltonian systems on momentum phase space $T^{*} M$, there is a related concept on the tangent bundle $T M$, interpreted as velocity phase space. In this context, a smooth function $L: T M \rightarrow \mathbb{R}$ is called Lagrangian. For a given point $x \in M$, denote the restriction of L to the fiber $T_{x} M$ by $L_{x}:=\left.L\right|_{T_{x} M}: T_{x} M \rightarrow \mathbb{R}$. The fiber derivative of L is defined as

$$
\begin{equation*}
\mathbb{F} L: T M \rightarrow T^{*} M, \quad(x, v) \mapsto \mathbb{F} L(x, v):=\left.d L_{x}\right|_{v} \tag{3.1}
\end{equation*}
$$

where $\left.d L_{x}\right|_{v}: T_{x} M \rightarrow \mathbb{R}$ is the differential of L_{x} at $v \in T_{x} M$. The function L is called a regular Lagrangian if $\mathbb{F} L$ is regular at all points (meaning that $\mathbb{F} L$ is a submersion), which is equivalent to $\mathbb{F} L: T M \rightarrow T^{*} M$ being a local diffeomorphism by [1, Prop. 3.5.9]. Furthermore, L is called hyperregular Lagrangian if $\mathbb{F} L: T M \rightarrow T^{*} M$ is a diffeomorphism. A class of hpyerregular Lagrangians, including the Lagrangian from Theorem 1, is given in (3.6) below.

The Lagrange two-form is defined as the pullback $\omega_{L}:=(\mathbb{F} L)^{*} \omega^{\text {can }}$ of the canonical symplectic form $\omega^{\text {can }}$ on the cotangent bundle $T^{*} M$ under the fiber derivative $\mathbb{F} L$. According to [1, Prop. 3.5.9], ω_{L} is a symplectic form on $T^{*} M$ if and only if L is a regular Lagrangian. In the following, we only consider regular Lagrangians. The action associated to the Lagrangian $L: T M \rightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
A: T M \rightarrow \mathbb{R}, \quad(x, v) \mapsto \mathbb{F} L(x, v)[v]=\left.d L_{x}\right|_{v}[v] \tag{3.2}
\end{equation*}
$$

and the energy function by $E:=A-L$, having the form

$$
\begin{equation*}
E: T M \rightarrow \mathbb{R}, \quad(x, v) \mapsto \mathbb{F} L(x, v)[v]-L(x, v)=\left.d L_{x}\right|_{v}[v]-L(x, v) \tag{3.3}
\end{equation*}
$$

The Lagrangian vector field for L is the unique vector field X_{E} on $T M$ satisfying

$$
\begin{equation*}
\left.d E\right|_{(x, v)}[u]=\omega_{L,(x, v)}\left(X_{E}, u\right) \quad \text { for all }(x, v) \in T_{x} M \text { and } u \in T_{(x, v)} T M \tag{3.4}
\end{equation*}
$$

that is $X_{E}=\omega_{L}^{\sharp}(d E)$. A curve $\gamma(t)=(x(t), v(t))$ on $T M$ is an integral curve of X_{E} if $v(t)=\dot{x}(t)$ and the classical Euler-Lagrange equations in local coordinates are satisfied

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}(x(t), \dot{x}(t))\right)=\frac{\partial L}{\partial x^{i}}(x(t), \dot{x}(t)) \quad \text { for all } i \in[n] . \tag{3.5}
\end{equation*}
$$

Let $\gamma: I \rightarrow T M$ be any integral curve of X_{E}. Because of $\frac{d}{d t} E(\gamma)=\left.d E\right|_{\gamma}[\dot{\gamma}]=$ $\left.d E\right|_{\gamma}\left[X_{E}(\gamma)\right]=\omega_{L, \gamma}\left(X_{E}(\gamma), X_{E}(\gamma)\right)=0$, the energy E is constant along γ.

Now, assume (M, h) is a Riemannian manifold. Suppose a smooth function $G: M \rightarrow \mathbb{R}$, called potential, is given and consider the Lagrangian

$$
\begin{equation*}
L(x, v):=\frac{1}{2}\|v\|_{h}^{2}-G(x), \quad \forall(x, v) \in T M \tag{3.6}
\end{equation*}
$$

It then follows (see [1, Sec. 3.7] or by direct computation) that the fiber derivative of L is the canonical isomorphism $\mathbb{F} L=h^{b}: T M \rightarrow T^{*} M$. Hence, the Lagrangian L is hyperregular with action A and energy $E=A-L$ given by

$$
\begin{equation*}
A(x, v)=\|v\|_{h}^{2} \quad \text { and } \quad E(x, v)=\frac{1}{2}\|v\|_{h}^{2}+G(x) \quad \text { for all }(x, v) \in T M \tag{3.7}
\end{equation*}
$$

Proposition 1. ([1, Prop. 3.7.4]). With L as defined in (3.6) on the Riemannian manifold (M, h), the curve $\gamma: I \rightarrow T M$ with $\gamma(t)=(x(t), v(t))$ is an integral curve of the Lagrangian vector field X_{E}, i.e. satisfies the Euler-Lagrange equation, if and only if the base integral curve $\pi \circ \gamma=x: I \rightarrow M$ satisfies

$$
\begin{equation*}
D_{t}^{h} \dot{x}(t)=-\operatorname{grad}^{h} G(x(t)) \tag{3.8}
\end{equation*}
$$

4 Mechanics of Assignment Flows

We now return to the metric data labeling task on a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ from the beginning of this paper. In this section, we consistently use the notation $m=|\mathcal{V}|$ and $n=\left|\mathcal{F}_{*}\right|$ for the number of nodes and labels respectively.

We first give a brief summary of the most important properties of the statistical manifold \mathcal{W}, followed by a short description of assignment flows. A more detailed overview can be found in the original work [4] or the recent survey [13]. After this, we apply the general theory of Lagrangian Systems from Section 3 to prove our main result stated as Theorem 1.

4.1 Assignment Manifold and Flows

Assignment Manifold. In the following, we always identify the manifold \mathcal{W} from (1.2) with its matrix embedding

$$
\begin{equation*}
\mathcal{W}=\left\{W \in \mathbb{R}^{m \times n}: W>0 \text { and } W \mathbb{1}_{n}=\mathbb{1}_{m}\right\} \tag{4.1}
\end{equation*}
$$

by sending the i-th component W_{i} of $W=\left(W_{k}\right)_{k \in \mathcal{V}} \in \mathcal{W}$ to the i-th row of a matrix in $\mathbb{R}^{m \times n}$. Therefore, points $W \in \mathcal{W}$ are row stochastic matrices with full
support, called assignment matrices, with row vectors $W_{i}=\left(W_{i}^{1}, \ldots, W_{i}^{n}\right)^{\top} \in \mathcal{S}$ representing the relaxed label assignment for every $i \in[m]$. With the identification from (2.1), the tangent space of $\mathcal{S} \subset \mathbb{R}^{n}$ from (1.1) at any point $p \in \mathcal{S}$ is identified as

$$
\begin{equation*}
T_{p} \mathcal{S}=\left\{v \in \mathbb{R}^{n}:\left\langle v, \mathbb{1}_{n}\right\rangle=0\right\}=: T \tag{4.2}
\end{equation*}
$$

Hence, $T_{p} \mathcal{S}$ is represented by the same vector space T for all $p \in \mathcal{S}$. In particular, the tangent bundle is trivial $T \mathcal{S}=\mathcal{S} \times T$. Viewing \mathcal{W} as an embedded submanifold of $\mathbb{R}^{m \times n}$ by (4.1) and using the identification (2.1) for the tangent space, we identify

$$
\begin{equation*}
T_{W} \mathcal{W}=\left\{V \in \mathbb{R}^{m \times n}: V \mathbb{1}_{n}=0\right\}=: \mathcal{T}, \quad \text { for all } W \in \mathcal{W} \subset \mathbb{R}^{m \times n} \tag{4.3}
\end{equation*}
$$

With this identification, the tangent bundle is also trivial $T \mathcal{W}=\mathcal{W} \times \mathcal{T}$.
From an information geometric viewpoint, e.g. [3] or [5], the Fisher-Rao (information) metric is a "canonical" Riemannian structure on \mathcal{S}, given by

$$
\begin{equation*}
g_{p}(u, v):=\left\langle u, \operatorname{Diag}\left(\frac{1}{p}\right) v\right\rangle, \quad \text { for all } p \in \mathcal{S}, u, v \in T=T_{p} \mathcal{S} \tag{4.4}
\end{equation*}
$$

Next, we define two important matrices, the orthogonal projection of \mathbb{R}^{n} onto T with respect to the Euclidean inner product

$$
\begin{equation*}
P_{T}:=I_{n}-\frac{1}{n} \mathbb{1}_{n} \mathbb{1}_{n} \in \mathbb{R}^{n \times n} \quad \text { viewed as } \quad P_{T}: \mathbb{R}^{n} \rightarrow T \tag{4.5}
\end{equation*}
$$

and for every $p \in \mathcal{S}$ the replicator matrix

$$
\begin{equation*}
R_{p}:=\operatorname{Diag}(p)-p p^{\top} \in \mathbb{R}^{n \times n} \quad \text { viewed as } \quad R_{p}: \mathbb{R}^{n} \rightarrow T \tag{4.6}
\end{equation*}
$$

A simple calculation shows that $R_{p}=R_{p} P_{T}=P_{T} R_{p}$ as well as $\operatorname{ker}\left(R_{p}\right)=\mathbb{R}_{n}$ hold for all $p \in \mathcal{S}$. Furthermore, if R_{p} is restricted to the linear subspace $T \subset \mathbb{R}^{n}$, then $\left.R_{p}\right|_{T}: T \rightarrow T$ is a linear isomorphism with inverse given by [12, Lem. 3.1]

$$
\begin{equation*}
\left(\left.R_{p}\right|_{T}\right)^{-1}(u)=P_{T} \operatorname{Diag}\left(\frac{1}{p}\right) u, \quad \text { for all } u \in T=T_{p} \mathcal{S} \tag{4.7}
\end{equation*}
$$

Now, suppose $J: \mathcal{S} \rightarrow \mathbb{R}$ is a smooth function defined on some open neighborhood U of \mathcal{S}, e.g. $U=\mathbb{R}_{>0}^{n}$. Then, according to [5, Prop. 2.2], the Riemannian gradient is given by $\operatorname{grad}^{g} J(p)=R_{p} \nabla J(p)$, for all $p \in \mathbb{R}^{n}$, where ∇J is the usual gradient of J on $U \subset \mathbb{R}^{n}$.

The product metric, again denoted by g, defined by

$$
\begin{equation*}
g_{W}(U, V):=\Sigma_{i \in[m]} g_{W_{i}}\left(U_{i}, V_{i}\right), \quad \text { for all } W \in \mathcal{W}, U, V \in \mathcal{T}=T_{W} \mathcal{W} \tag{4.8}
\end{equation*}
$$

turns \mathcal{W} into a Riemannian manifold. The orthogonal projection $\mathcal{P}_{\mathcal{T}}: \mathbb{R}^{m \times n} \rightarrow$ $\mathcal{T}, X \mapsto \mathcal{P}_{\mathcal{T}}[X]$, with respect to the Frobenius inner product of matrices and, for each $W \in \mathcal{W}$, the replicator operator $\mathcal{R}_{W}: \mathbb{R}^{m \times n} \rightarrow \mathcal{T}, X \mapsto \mathcal{R}_{W}[X]$, are defined row-wise by

$$
\begin{equation*}
\left(\mathcal{P}_{\mathcal{T}}[X]\right)_{i}:=P_{T} X_{i} \quad \text { and } \quad\left(\mathcal{R}_{W}[X]\right)_{i}:=R_{W_{i}} X_{i} \quad \text { for all } X \in \mathcal{T}, i \in[m] \tag{4.9}
\end{equation*}
$$

As a consequence, if a smooth function $J: \mathcal{W} \rightarrow \mathbb{R}$ is defined on some open neighborhood of \mathcal{W}, then the Riemannian gradient is given by

$$
\begin{equation*}
\operatorname{grad}^{g} J(W)=\mathcal{R}_{W}[\nabla J(W)] \in T_{W} \mathcal{W}=\mathcal{T}, \quad \text { for all } W \in \mathcal{W} \tag{4.10}
\end{equation*}
$$

where $\nabla J(W) \in \mathbb{R}^{m \times n}$ is the unique matrix fulfilling $\left.d J\right|_{W}[V]=\langle\nabla J(W), V\rangle$ for all $V \in \mathbb{R}^{m \times n}$. Therefore, $(\nabla J(W))_{i j}=\partial J / \partial W_{i}^{j}$, for all $i \in[m], j \in[n]$.

Assignment Flows. The replicator equation is a well known differential equation for modeling various processes in fields such as biology, economy and evolutionary game dynamics, see [6] or [11]. In a typical game dynamics scenario, as described in [6], the labels correspond to different strategies of an agent playing a game and $p=\left(p^{1}, \ldots, p^{n}\right)^{\top} \in \mathcal{S}$ are the probabilities p^{j} of playing the j-th strategy, $j \in[n]$. The fitness function $F: \mathcal{S} \rightarrow \mathbb{R}^{n}$, also called affinity measure, represents the payoff $F^{j}(p)$ for each strategy j depending on the state $p \in \mathcal{S}$. The replicator equation is a consequence of the assumption that the growth rate \dot{p}^{j} / p^{j} is given by the difference between the payoff $F^{j}(p)$ for strategy j and the average payoff $\sum_{k \in[n]} p^{k} F^{k}(p)=\langle F(p), p\rangle$, resulting in $\dot{p}^{j}=p^{j}\left(F^{j}(p)-\langle F(p), p\rangle\right)$. In vector notation, this can be written using the replicator matrix R_{p} from (4.6) as

$$
\dot{p}=p \diamond F(p)-\langle F(p), p\rangle p=R_{p} F(p), \quad \text { for all } p \in \mathcal{S}
$$

The replicator dynamics therefore describes a selection process: over time, the agent selects successful strategies more often.

From this game dynamics perspective, assignment flows for data labeling can be seen as a game of interacting agents, where each node $i \in \mathcal{V}$ in the graph represents one agent and the strategies are the labels in \mathcal{F}_{*}. The fitness function (payoff) for node $i \in \mathcal{V}$ is a function $F_{i}: \mathcal{W} \rightarrow \mathbb{R}^{n}$ depending on the global label assignments $W \in \mathcal{W}$ and thereby coupling the label decisions between different nodes. Thus, for each $i \in \mathcal{V}$ the process of label selection on the corresponding simplex \mathcal{S} is described by the replicator equation

$$
\dot{W}_{i}=R_{W_{i}} F_{i}(W), \quad W_{i}(t) \in \mathcal{S}
$$

coupled through the $F_{i}(W)$. In order to express this system of coupled replicator equations in a more compact way, we define the matrix valued fitness function $F: \mathcal{W} \rightarrow \mathbb{R}^{m \times n}$ with the i-th row given by $(F(W))_{i}:=F_{i}(W)$. Together with the replicator operator \mathcal{R}_{W} on \mathcal{W} from (4.9), the coupled replicator equations are compactly expressed through (1.3). We again refer the reader to the survey [13] for applications of this framework to data labeling and related work.

4.2 Proof of Theorem 1

Let $I:=\left[t_{0}, t_{1}\right]$ and suppose $F: U \rightarrow \mathbb{R}^{m \times n}$ is a fitness function defined on an open set $U \subset \mathbb{R}^{m \times n}$ containing \mathcal{W}. Since the squared Riemannian norm and the replicator operator are also defined on \mathcal{W}, the functional (1.4) from [10] can be easily extended to curves $W: I \rightarrow \mathcal{W}$ by simply replacing every occurrence of $p(t)$ with $W(t)$, resulting in

$$
\begin{equation*}
\mathcal{L}(W):=\int_{t_{0}}^{t_{1}} \frac{1}{2}\|\dot{W}(t)\|_{g}^{2}+\frac{1}{2}\left\|\mathcal{R}_{W(t)}[F(W(t))]\right\|_{g}^{2} d t \tag{4.11}
\end{equation*}
$$

The term $\left\|\mathcal{R}_{W(t)}[F(W(t))]\right\|_{g}^{2}$ can be rewritten in a slightly more interpretable way. For this, we view the inner product between a vector $x \in \mathbb{R}^{n}$ and a point
$p \in \mathcal{S}$ as the expected value $\langle x, p\rangle=\mathbb{E}_{p}[x]$ and similarly $\left\langle x^{\diamond 2}, p\right\rangle=\mathbb{E}_{p}\left[x^{2}\right]$. Thus, it is reasonable to talk about the variance of x with respect to p, given by

$$
\begin{equation*}
\operatorname{Var}_{p}(x)=\mathbb{E}_{p}\left[x^{2}\right]-\left(\mathbb{E}_{p}[x]\right)^{2}=\left\langle x^{\diamond 2}, p\right\rangle-\langle x, p\rangle^{2} \tag{4.12}
\end{equation*}
$$

Lemma 2. Let $p \in \mathcal{S}$ and $x \in \mathbb{R}^{n}$, then $\left\|R_{p} x\right\|_{g}^{2}=\left\langle x, R_{p} x\right\rangle=\operatorname{Var}_{p}(x)$. Thus, for $W \in \mathcal{W}$ and $X \in \mathbb{R}^{m \times n}$, we have $\left\|\mathcal{R}_{W}[X]\right\|_{g}^{2}=\sum_{i \in \mathcal{V}} \operatorname{Var}_{W_{i}}\left(X_{i}\right)=\left\langle X, \mathcal{R}_{W}[X]\right\rangle$.

Proof. Since P_{T} is the orthogonal projection and $R_{p} x \in T$, the squared norm of the Fisher-Rao metric (4.4) is given by $\left\|R_{p} x\right\|_{g}^{2}=\left\langle R_{p} x, P_{T} \operatorname{Diag}(1 / p) R_{p} x\right\rangle$. As a result of $R_{p}=\left.R_{p}\right|_{T} P_{T}$ and the formula for the inverse of $\left.R_{p}\right|_{T}$ from (4.7), we have $P_{T} \operatorname{Diag}\left(\frac{1}{p}\right) R_{p} x=\left.P_{T} \operatorname{Diag}\left(\frac{1}{p}\right) R_{p}\right|_{T} P_{T} x=P_{T} x$. Therefore, $\left\|R_{p}\right\|_{g}^{2}=$ $\left\langle R_{p} x, P_{T} x\right\rangle=\left\langle R_{p} x, x\right\rangle$ follows. As a consequence of $R_{p} x=p \diamond x-\langle p, x\rangle p$ we also directly get $\left\langle x, R_{p} x\right\rangle=\langle x, p \diamond x-\langle p, x\rangle p\rangle=\left\langle x^{\diamond 2}, p\right\rangle-\langle x, p\rangle^{2}=\operatorname{Var}_{p}(x)$. The statement for $\left\|\mathcal{R}_{W}[X]\right\|_{g}^{2}$ is a consequence of the product Riemannian metric (4.8) on \mathcal{W} and the definition of \mathcal{R}_{W} in (4.9) as a product map.

The result of the previous lemma explains the expression for \mathcal{L} in Theorem 1. With this, we are in the regime of Lagrangian mechanics on Riemannian manifolds from Section 3 with $M=\mathcal{W}$, Riemannian metric $h=g$ and potential

$$
\begin{equation*}
G: \mathcal{W} \rightarrow \mathbb{R}, \quad G(W):=-\frac{1}{2}\left\|\mathcal{R}_{W}[F(W)]\right\|_{g}^{2}=-\frac{1}{2} \sum_{k \in \mathcal{V}} \operatorname{Var}_{W_{k}}\left(F_{k}(W)\right) \tag{4.13}
\end{equation*}
$$

For $(W, V) \in T \mathcal{W}=\mathcal{W} \times \mathcal{T}$, the corresponding Lagrangian (3.6) takes the form

$$
L(W, V)=\frac{1}{2}\|V\|_{g}^{2}-G(W)=\frac{1}{2}\|V\|_{g}^{2}+\frac{1}{2} \sum_{k \in \mathcal{V}} \operatorname{Var}_{W_{k}}\left(F_{k}(W)\right)
$$

Therefore, the Euler-Lagrange equation (1.6) in Theorem 1 is a direct consequence of Proposition 1. The corresponding energy function (3.7) takes the form $E(W(t), \dot{W}(t))=\frac{1}{2}\|\dot{W}(t)\|_{g}^{2}-\frac{1}{2}\left\|\mathcal{R}_{W(t)}[F(W(t))]\right\|_{g}^{2}$ and is constant along curves $W: I \rightarrow \mathcal{W}$ fulfilling the Euler-Lagrange equation (1.6). However, due to this specific form of the energy, it follows that $E(W(t), \dot{W}(t))=0$ holds for all assignment flows (1.3), irrespective of whether or not the Euler-Lagrange equation is satisfied. This fact was also reported in [10] for the uncoupled replicator dynamics on a single simplex.

In the remaining part, we derive the characterization (1.7) for which F the assignment flow fulfills the Euler-Lagrange equation (1.6). We start by considering $\mathcal{R}_{W}[F(W)]$ as a function of $W \in \mathcal{W}$, denoted by

$$
\mathcal{R}[F]: \mathcal{W} \rightarrow \mathcal{T}, \quad W \mapsto \mathcal{R}[F](W):=\mathcal{R}_{W}[F(W)]
$$

In order to calculate the differential of $\mathcal{R}[F]$, we define the $n \times n$-matrix

$$
\begin{equation*}
B(p, x):=\operatorname{Diag}(x)-\langle p, x\rangle I_{n}-p x^{\top}, \quad \text { for } p \in \mathcal{S}, x \in \mathbb{R}^{n} \tag{4.14}
\end{equation*}
$$

and the linear map $\mathcal{B}(W, X): \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}$ with i-th row

$$
\begin{equation*}
(\mathcal{B}(W, X)[V])_{i}:=B\left(W_{i}, X_{i}\right) V_{i}, \quad \text { for } W \in \mathcal{W}, X \in \mathbb{R}^{m \times n} \tag{4.15}
\end{equation*}
$$

Lemma 3. With the identifications $T_{W} \mathcal{W}=\mathcal{T}$ and $T_{\mathcal{R}_{W}[F(W)]} \mathcal{T}=\mathcal{T}$, the differential of $\mathcal{R}[F]$ is a linear map $\left.d \mathcal{R}[F]\right|_{W}: \mathcal{T} \rightarrow \mathcal{T}$, given by

$$
\left.d \mathcal{R}[F]\right|_{W}[V]=\left.\mathcal{R}_{W} \circ d F\right|_{W}[V]+\mathcal{B}(W, F(W))[V], \quad \text { for } V \in \mathcal{T} .
$$

Proof. A short calculation shows $\left\langle B\left(W_{i}, F_{i}(W)\right) V_{i}, \mathbb{1}_{n}\right\rangle=0$ for all $i \in \mathcal{V}$, proving that $\mathcal{B}(W, X)[V] \in \mathcal{T}$ holds. Let $\eta:(-\varepsilon, \varepsilon) \rightarrow \mathcal{W}$ be a curve with $\eta(0)=W$ and $\dot{\eta}(0)=V$. Keeping in mind $R_{p}=\operatorname{Diag}(p)-p p^{\top}$, we obtain for all rows $i \in \mathcal{V}$

$$
\begin{aligned}
\left(\left.d \mathcal{R}[F]\right|_{W}[V]\right)_{i} & =\left.\frac{d}{d t} R_{\eta_{i}(t)} F_{i}(\eta(t))\right|_{t=0}=\left.\frac{d}{d t} R_{\eta_{i}(t)}\right|_{t=0} F_{i}(W)+\left.R_{W_{i}} \frac{d}{d t} F_{i}(\eta(t))\right|_{t=0} \\
& =\left(\operatorname{Diag}\left(V_{i}\right)-V_{i} W_{i}^{\top}-W_{i} V_{i}^{\top}\right) F_{i}(W)+\left(\mathcal{R}_{W}\left[\left.\frac{d}{d t} F(\eta(t))\right|_{t=0}\right]\right)_{i} \\
& =(\mathcal{B}(W, F(W))[V])_{i}+\left(\left.\mathcal{R}_{W} \circ d F\right|_{W}[V]\right)_{i},
\end{aligned}
$$

where $\operatorname{Diag}\left(V_{i}\right) F_{i}(W)=\operatorname{Diag}\left(F_{i}(W)\right) V_{i}$ and $V_{i}^{\top} F_{i}(W)=F_{i}(W)^{\top} V_{i}$ was used for the last equality.

Next, we consider the acceleration of curves on \mathcal{S} and \mathcal{W} with respect to the Riemannian metric g, that is the covariant derivative D_{t}^{g} of their velocities. Due to $T \mathcal{S}=\mathcal{S} \times T$, we can view the velocity of a curve $p: I \rightarrow \mathcal{S}$ as a map $\dot{p}: I \rightarrow T$. As T is a vector space, we can also consider its second derivative $\ddot{p}: I \rightarrow T$. Using the expression from [5, Eq. (2.60)] (with α set to 0), the acceleration $D_{t}^{g} \dot{p}$ of p is related to \ddot{p} by

$$
D_{t}^{g} \dot{p}(t)=\ddot{p}(t)-\frac{1}{2} \frac{(\dot{p}(t))^{\diamond 2}}{p(t)}+\frac{1}{2}\|\dot{p}(t)\|_{g}^{2} p(t)=\ddot{p}(t)-\frac{1}{2} A(p(t), \dot{p}(t))
$$

with $A: \mathcal{S} \times T \rightarrow T$ defined as $A(p, v):=\frac{1}{p} v^{\diamond 2}-\|v\|_{g}^{2} p$. Similarly, as a consequence of $T \mathcal{W}=\mathcal{W} \times \mathcal{T}$, the velocity of a curve $W: I \rightarrow \mathcal{W}$ can be viewed as a map $\dot{W}: I \rightarrow \mathcal{T}$, allowing for the second derivative \ddot{W}. Since the covariant derivative on a product manifold equipped with a product metric is the componentwise application of the individual covariant derivatives, the acceleration of $W(t)$ on \mathcal{W} has the form

$$
\begin{equation*}
D_{t}^{g} \dot{W}(t)=\ddot{W}(t)-\frac{1}{2} \mathcal{A}(W(t), \dot{W}(t)) \tag{4.16}
\end{equation*}
$$

with i-th row of $\mathcal{A}: \mathcal{W} \times \mathcal{T} \rightarrow \mathcal{T}$ given by $(\mathcal{A}(W, X))_{i}:=A\left(W_{i}, X_{i}\right)$ from above.
Lemma 4. Suppose $W: I \rightarrow \mathcal{S}$ is a solution of the assignment flow (1.3). Then, the acceleration of $W(t)$, that is the covariant derivative of $\dot{W}(t)$, takes the form $D_{t}^{g} \dot{W}(t)=\left.\mathcal{R}_{W(t)} \circ d F\right|_{W(t)} \circ \mathcal{R}_{W(t)}[F(W(t))]+\frac{1}{2} \mathcal{A}\left(W(t), \mathcal{R}_{W(t)}[F(W(t))]\right)$.

Proof. Since $W(t)$ is a solution of $\dot{W}(t)=\mathcal{R}_{W(t)}[F(W(t))]$, the second derivative $\ddot{W}=\frac{d}{d t} \dot{W}(t)$ takes the form (to simplify notation we drop the dependence on t)

$$
\ddot{W}=\frac{d}{d t} \mathcal{R}_{W}[F(W)]=\left.\left.d \mathcal{R}[F]\right|_{W}[\dot{W}] \stackrel{\text { Lem. }}{=}{ }^{3} \mathcal{R}_{W} \circ d F\right|_{W}[\dot{W}]+\mathcal{B}(W, F(W))[\dot{W}]
$$

The first term on the right-hand side equals $\left.\mathcal{R}_{W} \circ d F\right|_{W} \circ \mathcal{R}_{W}[F(W)]$ and the second term $\mathcal{B}(W, F(W))\left[\mathcal{R}_{W}[F(W)]\right]$, where \mathcal{B} is defined in terms of the matrix
B from (4.14). Thus, consider $B(p, x) R_{p} x$, for $p \in \mathcal{S}$ and $x \in \mathbb{R}^{n}$. The relations $\left\langle x, R_{p} x\right\rangle=\left\|\mathbb{R}_{p} x\right\|_{g}^{2}$ from Lemma 2 and $R_{p} x=p \diamond\left(x-\langle p, x\rangle \mathbb{1}_{n}\right)$ give $B(p, x) R_{p} x=$ $\left(x-\langle p, x\rangle \mathbb{1}_{n}\right) \diamond R_{p} x-\left\langle x, R_{p} x\right\rangle p=\frac{1}{p}\left(R_{p} x\right)^{\diamond 2}-\left\|R_{p} x\right\|_{g}^{2} p=A\left(p, R_{p} X\right)$. This implies $\mathcal{B}(W, F(W))\left[\mathcal{R}_{W}[F(W)]\right]=\mathcal{A}\left(W, \mathcal{R}_{W}[F(W)]\right)$ and results in the identity $\left.\ddot{W}=\left.\mathcal{R}_{W} \circ d F\right|_{W} \circ \mathcal{R}_{W}[F(W)]+\mathcal{A}\left(W, \mathcal{R}_{W}[F(W))\right]\right)$. Plugging this expression for \ddot{W} into the one for $D_{t}^{g} \dot{W}$ in (4.16) finishes the proof.

In the final step, we calculate the Riemannian gradient for the potential G from (4.13). Since F is defined on an open set $U \subset \mathbb{R}^{m \times n}$, with $\mathcal{W} \subset U$, we identify $T_{X} U=\mathbb{R}^{m \times n}$ and $T_{F(X)} \mathbb{R}^{m \times n}=\mathbb{R}^{m \times n}$ for all $X \in U$. Accordingly, the differential of F at X is a linear map $\left.d F\right|_{X}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}$ and its adjoint with respect to the Frobenius inner product on $\mathbb{R}^{m \times n}$ are denoted by $\left(\left.d F\right|_{X}\right)^{*}$.
Lemma 5. The Riemannian gradient of the potential G from (4.13) is given by $\operatorname{grad}^{g} G(W)=-\mathcal{R}_{W} \circ\left(\left.d F\right|_{W}\right)^{*} \circ \mathcal{R}_{W}[F(W)]-\frac{1}{2} \mathcal{A}\left(W, \mathcal{R}_{W}[F(W)]\right)$, for $W \in \mathcal{W}$
Proof. Let $W \in \mathcal{W}$. Since the i-th row of \mathcal{R}_{W} is given by symmetric matrices $R_{W_{i}}=\operatorname{Diag}\left(W_{i}\right)-W_{i} W_{i}^{\top}$, Lemma 1 implies $\mathcal{R}_{W}^{*}=\mathcal{R}_{W}$. Next, we calculate an expression for $\nabla G(W)$. For this, assume $V \in \mathbb{R}^{m \times n}$ is arbitrary and let $\eta:(-\varepsilon, \varepsilon) \rightarrow \mathcal{W}$ be a curve with $\eta(0)=W$ and $\dot{\eta}(0)=V$. Then

$$
\begin{aligned}
\left.d G\right|_{W}[V] & =\left.\frac{d}{d t} G(\eta(t))\right|_{t=0} \stackrel{\text { Lem. } 2}{=}-\left.\frac{1}{2} \frac{d}{d t}\left\langle F(\eta(t)), \mathcal{R}_{\eta(t)}[F(\eta(t))]\right\rangle\right|_{t=0} \\
& =-\frac{1}{2}\left\langle\left. d F\right|_{W}[V], \mathcal{R}_{W}[F(W)]\right\rangle-\frac{1}{2}\left\langle F(W),\left.d \mathcal{R}[F]\right|_{W}[V]\right\rangle
\end{aligned}
$$

With the expression for $\left.d \mathcal{R}[F]\right|_{W}$ from Lemma 3 together with $\mathcal{R}_{W}^{*}=\mathcal{R}_{W}$, the second inner product takes the form

$$
\begin{gathered}
\left\langle F(W),\left.d \mathcal{R}[F]\right|_{W}[V]\right\rangle=\left\langle F(W),\left.\mathcal{R}_{W} \circ d F\right|_{W}[V]\right\rangle+\langle F(W), \mathcal{B}(W, F(W))[V]\rangle \\
=\left\langle\left(\left.d F\right|_{W}\right)^{*} \circ \mathcal{R}_{W}[F(W)], V\right\rangle+\left\langle\mathcal{B}^{*}(W, F(W))[F(W)], V\right\rangle
\end{gathered}
$$

Substituting this formula back into the above expression for $\left.d G\right|_{W}$ together with $\left\langle\left. d F\right|_{W}[V], \mathcal{R}_{W}[F(W)]\right\rangle=\left\langle V,\left(\left.d F\right|_{W}\right)^{*} \circ \mathcal{R}_{W}[F(W)]\right\rangle$ for the first inner product, results in $\left.d G\right|_{W}[V]=\left\langle-\left(\left.d F\right|_{W}\right)^{*} \circ \mathcal{R}_{W}[F(W)]-\frac{1}{2}\left\langle\mathcal{B}^{*}(W, F(W))[F(W)], V\right\rangle\right.$. Since V is arbitrary, $\nabla G(W)=-\left(\left.d F\right|_{W}\right)^{*} \circ \mathcal{R}_{W}[F(W)]-\frac{1}{2} \mathcal{B}^{*}(W, F(W))[F(W)]$ follows. Due to (4.10), the Riemannian gradient is given by

$$
\operatorname{grad}^{g} G(W)=-\mathcal{R}_{W} \circ\left(\left.d F\right|_{W}\right)^{*} \circ \mathcal{R}_{W}[F(W)]-\frac{1}{2} \mathcal{R}_{W}\left[\mathcal{B}^{*}(W, F(W))[F(W)]\right]
$$

Because \mathcal{B} is defined in terms of the matrix B from (4.14), the adjoint \mathcal{B}^{*} is determined by B^{\top} through Lemma 1 . For $p \in \mathcal{S}$ and $x \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
R_{p} B^{\top}(p, x) x & =R_{p}\left(\operatorname{Diag}(x)-\langle p, x\rangle I_{n}-x p^{\top}\right) x=R_{p}\left(x^{\diamond 2}-2\langle p, x\rangle x\right) \\
& =p \diamond x^{\diamond 2}-\left\langle x^{\diamond 2}, p\right\rangle p-2\langle p, x\rangle x \diamond p+2\langle p, x\rangle^{2} p \\
& =\left(p \diamond x^{\diamond 2}-2\langle p, x\rangle x \diamond p+\langle p, x\rangle p\right)-\left(\left\langle x^{\diamond 2}, p\right\rangle-\langle p, x\rangle\right) p \\
& =\frac{1}{p}(p \diamond x-\langle p, x\rangle p)^{\diamond 2}-\left\|R_{p} x\right\|_{g}^{2} p=A\left(p, R_{p} x\right)
\end{aligned}
$$

where the relation $\left\langle p, x^{\diamond 2}\right\rangle-\langle p, x\rangle^{2}=\operatorname{Var}_{p}(x)=\left\|R_{p} x\right\|_{g}^{2}$ from (4.12) and Lemma 2 was used in the last line. Therefore, $\mathcal{R}_{W}\left[\mathcal{B}^{*}(W, F(W))[F(W)]\right]=$ $\mathcal{A}\left(W, \mathcal{R}_{W}[F(W)]\right)$ holds which proves the statement.

Proof (Theorem 1). Suppose $W(t)$ is a solution of the assignment flow (1.3). Due to Lemma 4 and 5 , the expression for the acceleration of $W(t)$ and the Riemannian gradient of G at $W(t)$ both contain the term $\frac{1}{2} \mathcal{A}\left(W(t), \mathcal{R}_{W(t)}[F(W(t))]\right)$ which yields the relation

$$
\begin{aligned}
& D_{t}^{g} \dot{W}(t)-\frac{1}{2} \sum_{k \in \mathcal{V}} \operatorname{grad}^{g} \operatorname{Var}_{W_{k}}\left(F_{k}(W)\right) \stackrel{(4.13)}{=} D_{t}^{g} \dot{W}(t)+\operatorname{grad}^{g} G(W) \\
& =\left.\mathcal{R}_{W(t)} \circ d F\right|_{W(t)} \circ \mathcal{R}_{W(t)}[F(W(t))]-\mathcal{R}_{W(t)} \circ\left(\left.d F\right|_{W(t)}\right)^{*} \circ \mathcal{R}_{W(t)}[F(W(t))] \\
& =\mathcal{R}_{W(t)} \circ\left(\left.d F\right|_{W(t)}-\left(\left.d F\right|_{W(t)}\right)^{*}\right) \circ \mathcal{R}_{W(t)} F(W(t))
\end{aligned}
$$

As a consequence, the characterization of F in (1.7) is equivalent to the EulerLagrange equation (1.6).

Remark 1. As can be seen from the expression of $D_{t}^{g} W(t)$ in (4.16), the EulerLagrange equation is a second-order differential equation. The reason why all second- and first-order terms disappear in the condition (1.7) for F is due to the fact that any solution of the assignment flow satisfies $W(t)=\mathcal{R}_{W(t)}[F(W(t)]$, allowing to replace any occurrences of \ddot{W} and \dot{W} by alternative expressions in terms of the replicator operator. This basically is the statement of Lemma 4.

4.3 Counterexample

It can be shown that in the case of $n=2$ labels any fitness function F fulfills condition (1.7) and therefore also the Euler-Lagrange equation. However, for $n>2$ labels this is no longer true in general, as the example below demonstrates. Nevertheless, a large class of fitness functions always fulfilling condition (1.7) is given by those defined as the gradient $F=\nabla \beta$ of an objective function β. Since the corresponding derivative $\left.d F\right|_{x}=\operatorname{Hess} \beta(x)$ is self-adjoint, the condition is trivially fulfilled.

For the counterexample, assume $n>2$. We first consider the case of $m=$ $|\mathcal{V}|=1$ nodes, that is an uncoupled replicator equation on a single simplex. Define the matrix $F:=e_{2} e_{1}^{\top}$, where e_{i} are the standard basis vectors of \mathbb{R}^{n}. Thus, the fitness is a linear map $p=\left(p^{1}, \ldots, p^{n}\right)^{\top} \mapsto F p=p^{1} e_{2}$, fulfilling $\left.d F\right|_{p}=F$ and $\left(\left.d F\right|_{p}\right)^{*}=F^{\top}$. After a short calculation, using the relation $R_{p} e_{i}=p^{i}\left(e_{i}-p\right)$ (Einstein summation convention is not used), the first coordinate of condition (1.7) takes the form

$$
\left(R_{p}\left(F-F^{\top}\right) R_{p} F p\right)^{1}=-\left(p^{1}\right)^{2} p^{2}\left(1-p^{1}-p^{2}\right) \neq 0, \quad \text { for all } p \in \mathcal{S}
$$

In the more general case $m>1$, define the i-th row of the linear fitness $\mathcal{F}[W]$ by $(\mathcal{F}[W])_{i}:=F W_{i}$. Since $\left(\mathcal{F}^{*}[W]\right)_{i}=F^{\top} W_{i}$ by Lemma 1 , the counterexample also extends to general coupled replicator equations on \mathcal{W}.

5 Conclusion

Starting from the viewpoint of Lagrangian mechanics on manifolds, we showed that assignment flows solve the Euler-Lagrange equations associated with an action functional. We further characterized those solutions in terms of the fitness function F, which allowed to rectify the result of $[10]$ for uncoupled replicator equations on a single simplex.

Regarding future work, there is a relation to Hamiltonian mechanics via the Legendre transformation, which enables to analyze assignment flows as systems of interacting particles from a physics point of view. There also exists a connection to geodesic motion for a modified Riemannian metric on \mathcal{W}, the so called Jacobi metric, that provides yet another way of characterizing assignment flows.

Acknowledgments. This work is supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy EXC-2181/1-390900948 (the Heidelberg STRUCTURES Cluster of Excellence). PA was also supported by the Transregional Colloborative Research Center CRC/TRR 191 (281071066).

References

1. Abraham, R., Marsden, J.: Foundations of Mechanics. Addison-Wesley Publishing Company, Inc., Redwood City, 2 edn. (1987)
2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press (2008)
3. Amari, S.i., Nagaoka, H.: Methods of Information Geometry, vol. 191. American Mathematical Soc. (2007)
4. Aström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image Labeling by Assignment. J. Math. Imag. Vision 58(2), 211-238 (2017)
5. Ay, N., Jost, J., Vân Lê, H., Schwachhöfer, L.: Information Geometry, vol. 64. Springer (2017)
6. Hofbauer, J., Sigmund, K.: Evolutionary Game Dynamics. Bull. Amer. Math. Soc. 40(4), 479-519 (2003)
7. Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, 7th edn. (2017)
8. Lee, J.M.: Smooth Manifolds. Springer (2013)
9. Lee, J.M.: Introduction to Riemannian Manifolds, vol. 2. Springer (2018)
10. Raju, V., Krishnaprasad, P.: A Variational Problem on the Probability Simplex. In: 2018 IEEE Conf. on Decision and Control (CDC). pp. 3522-3528. IEEE (2018)
11. Sandholm, W.H.: Population Games and Evolutionary Dynamics. MIT press (2010)
12. Savarino, F., Schnörr, C.: Continuous-Domain Assignment Flows. Europ. J. Appl. Math. pp. 1-28 (2020)
13. Schnörr, C.: Assignment Flows. In: Grohs, P., Holler, M., Weinmann, A. (eds.) Handbook of Variational Methods for Nonlinear Geometric Data, pp. 235-260. Springer (2020)
