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Assignment flows denote a class of dynamical models for contextual data labelling (classification)
on graphs. We derive a novel parametrisation of assignment flows that reveals how the underlying
information geometry induces two processes for assignment regularisation and for gradually enforc-
ing unambiguous decisions, respectively, that seamlessly interact when solving for the flow. Our
result enables to characterise the dominant part of the assignment flow as a Riemannian gradient
flow with respect to the underlying information geometry. We consider a continuous-domain formu-
lation of the corresponding potential and develop a novel algorithm in terms of solving a sequence of
linear elliptic partial differential equations (PDEs) subject to a simple convex constraint. Our result
provides a basis for addressing learning problems by controlling such PDEs in future work.
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1 Introduction

Deep networks are omnipresent in many disciplines due to their unprecedented predictive power
and the availability of software for training that is easy to use. However, this rapid development
during recent years has not improved our mathematical understanding in the same way, so far
[14]. The ‘black box’ behaviour of deep networks and systematic failures [5], the lack of per-
formance guarantees and reproducibility of results raise doubts if a purely data-driven approach
can deliver the high expectations of some of its most passionate proponents [11]. ‘Mathematics
of deep networks’, therefore, has become a focal point of research.

Based on residual networks, introduced in [16], attempts to understand deep network architec-
tures as discretised realisations of dynamical systems mathematically substantiated and promoted
by, for example, [15, 30], have become a fruitful line of research. Adopting this viewpoint, we
introduced a dynamical system – called assignent flow – for contextual data classification and
image labelling on graphs [6]. We refer to [27] for a review of recent work including parameter
estimation (learning) [18], adaption of data prototypes during assignment [34] and learning pro-
totypes from low-rank data representations and self-assignment [37]. Convergence and stability
of the assignment flow have been studied by [33].

Two key properties of the assignment flow are smoothness and gradual enforcement of unam-
bigious classification in a single process, solely induced by adopting an elementary statistical
manifold as state space that is natural for classification tasks, and the corresponding information
geometry [2]. This differs from traditional variational approaches to image labelling [21, 10] that
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Continuous-domain assignment flow 571

enjoy convexity but are inherently non-smooth and require post-processing to achieve unam-
bigous decisions. In addition, hierarchical combinations of such variational approaches lead
to non-smooth non-convex multi-level optimisation problems. By contrast, the corresponding
extensions of the assignment flow, such as simultaneous adaption of feature prototypes [34],
yield more complex but still smooth dynamical systems, the flows of which can be conveniently
computed using geometric integration.

The assignment flow combines by composition (rather than by addition) separate local pro-
cesses at each vertex of the underlying graph and non-local regularisation. Each local process
for label assignment is governed by an ordinary differential equation (ODE), the replicator
equation [17, 26], whereas regularisation is accomplished by non-local geometric averaging of
the evolving assignments. It is well known [17] that if the affinity measure which defines the
replicator equation and hence governs label selection can be derived as gradient of a potential,
then the replicator equation is just the corresponding Riemannian gradient flow induced by the
Fisher–Rao metric. The geometric regularisation of assignments performed by the assignment
flow yields an affinity measure for which the (non-)existence of a corresponding potential is not
immediate, however.

Contribution and Organisation. The objective of this paper is to clarify this situation. After
collecting background material in Section 2, we prove that no potential exists that enables to
characterise the assignment flow as Riemannian gradient flow (Section 3.1). Next, we provide a
novel parametrisation of the assignment flow by separating a dominant component of the flow,
called S-flow, that completely determines the remaining component and hence essentially char-
acterises the assignment flow (Section 3.2). The S-flow does correspond to a potential, under an
additional symmetry assumption with respect to the weights that parametrise the regularisation
properties of the assignment flow through (weighted) geometric averaging. Based on this result,
convergence and stability of the assignment flow have been studied recently [33]. This poten-
tial can be decomposed into two components that make explicit the two interacting processes
mentioned above: regularisation of label assignments and gradually enforcing unambigous deci-
sions. We point out again that this is a direct consequence of the ‘spherical geometry’ (positive
curvature) underlying the assignment flow.

Based on this result, we consider the corresponding continuous-domain variational formula-
tion in Section 4. We prove well-posedness which is not immediate due to non-convexity, and we
propose an algorithm that computes a locally optimal assignment by solving a sequence of simple
linear PDEs, with changing right-hand side and subject to a simple convex constraint. A numeri-
cal example demonstrates that our PDE-based approach reproduces results obtained with solving
the original formulation of the assignment flow using completely different numerical techniques
[35]. We hope that the simplicity of our PDE-approach and the direct connection to a smooth
geometric setting will stimulate future work on learning, from an optimal control point of view
[31, 22]. We conclude by a formal derivation of a PDE that characterises global minimisers of
the non-convex objective function (Section 4.4) and by outlining future research in Section 5.

2 Preliminaries

2.1 Basic notation

We denote the standard basis of Rn by

Bn := {e1, . . . , en}. (2.1)
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572 F. Savarino and C. Schnörr

| · | applied to a finite set denotes its cardinality, that is, |Bn| = n. We set [n] = {1, 2, . . . , n} for
n ∈N and 1n = (1, 1, . . . , 1)� ∈R

n. The symbols

I = [n], J = [c], n, c ∈N (2.2)

will specifically index data points and classes (labels), respectively. ‖ · ‖ denotes the Euclidean
vector norm and the Frobenius matrix norm induced by the inner product ‖A‖ = 〈A, A〉1/2 =
tr(A�A)1/2. All other norms will be indicated by a corresponding subscript. For a given matrix
A ∈R

n×c, Ai, i ∈ [n] denote the row vectors, Aj, j ∈ [c] denote the column vectors and A� ∈R
c×n

the transpose matrix. Rn+ is the set of vectors in R
n with nonnegative entries and

�n = {p ∈R
n
+ : 〈1n, p〉 = 1} (2.3)

denotes the probability simplex. There will be no danger to confuse it with the Laplacian differ-
ential operator� that we use without subscript. For strictly positive vectors p> 0, we efficiently
denote componentwise subdivision by v

p . Likewise, we set pv = (p1v1, . . . , pnvn)�. The expo-
nential function applies componentwise to vectors (and similarly for log) and will always be
denoted by ev = (ev1 , . . . , evn )�, in order not to confuse it with the exponential maps (2.19).

Strong and weak convergence of a sequence ( fn) is written as fn → f and fn ⇀ f , respectively.
ψS denotes the indicator function of some set S: ψS(i) = 1 if i ∈ S and ψS(i) = 0 otherwise.
δC denotes the indicator function from the optimisation point of view: δC( f ) = 0 if f ∈ C and
δC( f ) = +∞ otherwise.

2.2 Assignment manifold and flow

We sketch the assignment flow as introduced by [6] and refer to the recent survey [27] for more
background and a review of recent related work.

2.2.1 Assignment manifold

Suppose I is a set of n := |I| nodes and let

f : I →F , i 
→ fi ∈F (2.4)

represent some given data with values in a metric space (F , dF ). Further, assume that a set of
predefined prototypes

F∗ = {f ∗
j ∈F : j ∈J }, |J | = c, (2.5)

also called labels, is given. Data labelling denotes the task of assigning to each node i ∈ I a label
in F∗, depending on the data f in some spatial context

I →F∗, i 
→ f ∗
ji

. (2.6)

If the given data are an image on a grid graph whose nodes and edges index the pixels and
a neighbourhood structure, then the labelling task is also referred to as image labelling, see
Figure 1 for an illustration.

In order to device a mathematical formulation for this dependence on the data, the set I is
assumed to form the vertex set of an undirected graph G = (I, E) which defines a relation E ⊂
I × I and neighbourhoods
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Continuous-domain assignment flow 573

FIGURE 1. Two examples of image labelling. Top, from left to right: noisy medical image data of retinal
tissue obtained by a non-invasive imaging method. The labelling task is to segment the different layers
of tissue. Bottom, from left to right: an image depicting a texture with various orientations. The (colour
coded) labels in this case are the different orientations of 0, 5, . . . , 175 degrees corresponding to a bank
of orientation-selective Gabor filters that is applied to the image data in a pre-processing step. The task
is to estimate the dominant orientation at every pixel depending on the spatial context. Labelling with
small-scale spatial regularisation resolves more details but is also susceptible to noise, whereas large-scale
regularisation labels the dominant orientations in a robust way.

Ni := {k ∈ I : ik ∈ E} ∪ {i}, (2.7)

where ik is a shorthand for the unordered pair (edge) (i, k) = (k, i). We require these neighbour-
hoods to satisfy the relations

k ∈Ni ⇔ i ∈Nk , ∀i, k ∈ I. (2.8)

The assignments (labelling) (2.6) are represented by matrices in the set

W∗ := {W ∈ {0, 1}n×c : W1c = 1n} (2.9)

with unit vectors Wi, i ∈ I, called assignment vectors, as row vectors. These assignment vectors
are computed by numerically integrating the assignment flow below (2.32), in the following
elementary geometric setting. The integrality constraint of (2.9) is relaxed and vectors

Wi = (Wi1, . . . , Wic)� ∈ S , i ∈ I, (2.10)

that we still call assignment vectors, are considered on the elementary Riemannian manifold

(S , g), S := {p ∈�c : p> 0}, (2.11)
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574 F. Savarino and C. Schnörr

with

1S := 1

c
1c ∈ S , (barycenter) (2.12)

(constant) tangent space

T0 := {v ∈R
c : 〈1c, v〉 = 0}, (2.13)

and tangent bundle TS = S × T0, orthogonal projection

�0 : Rc → T0, �0 := I − 1S1�
c , (2.14)

and the Fisher–Rao metric

gp(u, v) :=
∑
j∈J

ujvj

pj
, p ∈ S , u, v ∈ T0. (2.15)

For p ∈ S , the replicator operator is the linear map

Rp : Rc → T0, Rp := Diag(p) − pp�, (2.16)

satisfying

Rp = Rp�0 =�0Rp and R1S = 1

c
�0. (2.17)

For a vector field F : S →R
c, representing an affinity measure, the corresponding replicator

equation is given by

ṗk = pk(Fk(p) −Ep[F]) = pkFk(p) − 〈p, F(p)〉pk = (
RpF(p)

)
k

for all k ∈ [c]. (2.18)

Thus, the replicator operator Rp can be seen as the parameterisation of the replicator equation
[17] given the vector field F.

The exponential map and its inverse are defined as

Exp: S × T0 → S , (p, v) 
→ Expp(v) := pe
v
p〈

p, e
v
p
〉 , (2.19a)

Exp−1
p : S → T0, q 
→ Exp−1

p (q) = Rp log
q

p
, (2.19b)

and using Rp, the lifting map and its inverse are given by

expp : T0 → S , expp := Expp ◦Rp, (2.19c)

exp−1
p : S → T0, exp−1

p (q) =�0 log
q

p
. (2.19d)

Applying the map expp to a vector in R
c = T0 ⊕R1 does not depend on the constant component

of the argument, due to (2.17).

Remark 2.1 (1) The map Exp is not the exponential map of the Riemannian connection
but corresponds to the e-connection of information geometry [2]. Accordingly, the affine
geodesics (2.19a) are not length-minimising. However, they provide a close approximation
[6, Proposition 3] and are more convenient for numerical computations.
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Continuous-domain assignment flow 575

(2) For x ∈R
c and p ∈ S , the lifting map can alternatively be characterised by

expp(−x) = argminq∈�
{〈q, x〉 + KL(q, p)

}
, (2.20)

a projected gradient step [7] with respect to the KL divergence.

The assignment manifold is defined as

(W , g), W := S × · · · × S . (n = |I| factors) (2.21)

We identify W with the embedding into R
n×c

W = {W ∈R
n×c : W1c = 1n and Wij > 0 for all i ∈ [n], j ∈ [c]}. (2.22)

Thus, points W ∈W are row-stochastic matrices W ∈R
n×c with row vectors Wi ∈ S , i ∈ I that

represent the assignments (2.6) for every i ∈ I. We set

T0 := T0 × · · · × T0 (n = |I| factors). (2.23)

Due to (2.22), the tangent space T0 can be identified with

T0 = {V ∈R
n×c : V1c = 0}. (2.24)

Thus, Vi ∈ T0 for all row vectors of V ∈R
n×c and i ∈ I. All mappings defined above factorise in

a natural way and apply row-wise, for example, ExpW = (ExpW1
, . . . , ExpWn

).

2.2.2 Assignment flow

Based on (2.4) and (2.5), the distance vector field

DF ;i := (
dF ( fi, f ∗

1 ), . . . , dF ( fi, f ∗
c )
)�

, i ∈ I, (2.25)

is well defined. These vectors are collected as row vectors of the distance matrix

DF ∈R
n×c
+ . (2.26)

The likelihood map and the likelihood vectors, respectively, are defined as

Li : S → S , Li(Wi) := expWi

(
− 1

ρ
DF ;i

)
= Wie

− 1
ρ DF ;i

〈Wi, e− 1
ρ DF ;i〉

, i ∈ I, (2.27)

where the scaling parameter ρ > 0 is used for normalising the a priori unknown scale of the
components of DF ;i that depends on the specific application at hand. In this way, the distance
information DF ;i for each node i ∈ I is lifted onto the assignment manifold, depending on the
current assignment Wi.

A key component of the assignment flow is the interaction of the likelihood vectors through
geometric averaging within the local neighbourhoods (2.7). Specifically, using weights,

ωik > 0, for all k ∈Ni, i ∈ I with
∑
k∈Ni

wik = 1, (2.28)

the similarity map and the similarity vectors, respectively, are defined as

Si : W → S , Si(W ) := ExpWi

( ∑
k∈Ni

wik Exp−1
Wi

(
Lk(Wk)

))
, i ∈ I. (2.29)
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576 F. Savarino and C. Schnörr

If ExpWi
were the exponential map of the Riemannian (Levi-Civita) connection, then the argu-

ment inside the brackets of the right-hand side would just be the negative Riemannian gradient
with respect to Wi of the centre of mass objective function comprising the points Lk , k ∈Ni,
that is, the weighted sum of the squared Riemannian distances between Wi and Lk [19, Lemma
6.9.4]. In view of Remark 2.1, this interpretation is only approximately true mathematically
but still correct informally: Si(W ) moves Wi towards the geometric mean of the likelihood vec-
tors Lk , k ∈Ni. Since ExpWi

(0) = Wi, this mean is equal to Wi if the aforementioned gradient
vanishes.

Remark 2.2 An alternative interpretation of the similarity matrix is given in [6]. For this, denote
the weighted geometric mean of the likelihood vectors in the neighbourhood Ni around i ∈ I by

gmωi
{
Lk(Wk)

}
k∈Ni

:=
∏

k∈Ni

(
Lk(Wk)

)ωik . (2.30)

Then, the similarity matrix is equivalently characterised as the normalised geometric mean,
which in turn is the weighted center of mass with respect to the KL divergence on S , that is,

Si (W ) = gmωi{Lk(Wk)}k∈Ni〈
1c, gmωi{Lk(Wk)}k∈Ni

〉 = argminp∈�

{ ∑
k∈Ni

ωik KL
(
p, Lk(Wk)

)}
. (2.31)

The assignment flow is induced by the locally coupled system of non-linear ODEs

Ẇ = RW S(W ), W (0) = 1W , (2.32a)

Ẇi = RWi Si(W ), Wi(0) = 1S , i ∈ I, (2.32b)

where 1W ∈W denotes the barycentre of the assignment manifold (2.21). In view of (2.18),
the assignment flow (2.32b) is a set of spatially coupled replicator equations with the similar-
ity matrix S(W ) as the corresponding local affinity measure, that represents the dependence of
assignments on the given data in a spatial context. The solution curve W (t) ∈W is numerically
computed by geometric integration [35] and determines a labelling W (T) ∈W∗ for sufficiently
large T after a trivial rounding operation.

2.3 Functional analysis

We record background material that will be used in Section 4.

2.3.1 Sobolev spaces

We list few basic definitions and fix the corresponding notation [36, 1]. Throughout this section,
	⊂R

d denotes an open-bounded domain.
We denote the inner product and the norm of functions f , g ∈ L2(	) by

( f , g)	 =
∫
	

fgdx, ‖f ‖	 = ( f , f )1/2
	 . (2.33)

Functions f1 and f2 are equivalent and identified whenever they merely differ pointwise on
a Lebesque-negligible set of measure zero. f1 and f2 are then said to be equal a.e. (almost
everywhere). H1(	) = W 1,2(	) denotes the Sobolev space of functions f with square-integrable
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Continuous-domain assignment flow 577

weak derivatives Dαf up to order one. H1(	) is a Hilbert space with inner product and norm
denoted by

( f , g)1;	 =
∑
|α|≤1

(Dαf , Dαg)	, ‖f ‖1;	 =
( ∑

|α|≤1

‖Dαf ‖2
	

)1/2

. (2.34)

Lemma 2.3 ([36, Corollary 2.1.9]) If	 is connected, u ∈ H1(	) and Du = 0 a.e. on 	, then u is
equivalent to a constant function on 	.

The closure in H1(	) of the set of test functions C∞
c (	) that are compactly supported on 	 is

the Sobolev space

H1
0 (	) = C∞

c (	) ⊂ H1(	). (2.35)

It contains all functions in H1(	) whose boundary values on ∂	 (in the sense of traces) vanish.
The space H1(	; Rc), 2 ≤ c ∈N contains vector-valued functions f whose component functions
fi, i ∈ [c] are in H1(	). For notational efficiency, we denote the norm of f ∈ H1(	; Rc) by

‖f ‖1;	 =
(∑

i∈[c]

‖fi‖2
1;	

)1/2

, (2.36)

as in the scalar case (2.34). It will be clear from the context if f is scalar- or vector-valued.
The compactness theorem of Rellich–Kondrakov [1, Theorem 5.3.3] says that the canonical

embedding

H1
0 (	) ↪→ L2(	) (2.37)

is compact, that is, every bounded subset in H1
0 (	) is relatively compact in L2(	). This extends

to the vector-valued case

H1
0 (	; Rc) ↪→ L2(	; Rc) (2.38)

since H1
0 (	; Rc) is isomorphic to H1

0 (	) × · · · × H1
0 (	) and likewise for L2(	; Rc). The

dual space of H1
0 (	) is commonly denoted by H−1(	) = (

H1
0 (	)

)′
. Accordingly, we set

H−1(	; Rc) = (
H1

0 (	; Rc)
)′

.

2.3.2 Weak convergence properties, variational inequalities

We list few further basic facts [32, Proposition 38.2], [1, Proposition 2.4.6].

Proposition 2.4 The following assertions hold in a Banach space X .

(a) A closed convex subset C ⊂ X is weakly closed, that is a sequence ( fn)n∈N ⊂ C that weakly
converges to f implies f ∈ C.

(b) If X is reflexive (in particular, if X is a Hilbert space), then every bounded sequence in X
has a weakly convergent subsequence.

(c) If fn weakly converges to f , then ( fn)n∈N is bounded and

‖f ‖X ≤ lim inf
n→∞ ‖fn‖X . (2.39)
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578 F. Savarino and C. Schnörr

The following theorem states conditions for minimisers of the functional to satisfy a
corresponding variational inequality.

Theorem 2.5 ([32, Theorem 46.A(a)]) Let F : C →R be a functional on the convex non-empty
set C of a real locally convex space X , and let b ∈ X ′ be a given element. Suppose the Gateaux-
derivative F′ exists on C. Then any solution f of

min
f ∈C

{
F( f ) − 〈b, f 〉X ′×X

}
(2.40)

satisfies the variational inequality

〈F′( f ) − b, h − f 〉X ′×X ≥ 0, for all h ∈ C. (2.41)

3 A novel representation of the assignment flow

Let J : W →R be a smooth function on the assignment manifold (2.21) and denote the
Riemannian gradient of J at W ∈W induced by the Fisher–Rao metric (2.15) by grad J (W ) ∈ T0.
In view of the embedding (2.22), we can also compute the Euclidean gradient of J denoted by
∂ J (W ) ∈R

n×c. These two gradients are related by [6, Proposition 1]

grad J (W ) = RW ∂ J (W ), W ∈W , (3.1)

where RW : Rn×c → T0 is the product map obtained by applying RWi from (2.16) to every row
vector indexed by i ∈ I. This relation raises the natural question: Is there a potential J such that
the assignment flow (2.32) is a Riemannian gradient descent flow with respect to J , that is, does
RW S(W ) = − grad J (W ) hold?

We next show that such a potential does not exist in general (Section 3.1). However, in
Section 3.2, we derive a novel representation by decoupling the assignment flow into two sep-
arate flows, where one flow steers the other and in this sense dominates the assignment flow.
Under the additional assumption that the weights ωij of the similarity map S(W ) in (2.29) are
symmetric, we show that the dominating flow is a Riemannian gradient flow induced by a poten-
tial. This result is the basis for the continuous-domain formulation of the assignment flow studied
in the subsequent sections.

3.1 Non-potential flow

We next show (Theorem 3.5) that under some mild assumptions on DF (2.26) which are always
fulfilled in practice, no potential J exists that induces the assignment flow. In order to prove this
result, we first derive some properties of the mapping exp given by (2.19c) as well as explicit
expressions of the differential dS(W ) of the similarity map (2.29) and its transpose dS(W )� with
respect to the standard Euclidean structure on R

n×c.

Lemma 3.1 The following properties hold for expp and its inverse (2.19c), (2.19d).

(1) For every p ∈ S , the map expp : Rc → S can be expressed by

v 
→ expp(v) = pev

〈p, ev〉 . (3.2)
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Continuous-domain assignment flow 579

Its restriction to T0, expp : T0 → S , is a diffeomorphism. The differential of expp and
exp−1

p at v ∈ T0 and q ∈ S , respectively, are given by

d expp(v)[u] = Rexpp(v)[u] and d exp−1
p (q)[u] =�0

[
u

q

]
for all u ∈ T0. (3.3)

(2) Let p, q ∈ S . Then, Exp−1
p (q) = Rp exp−1

p (q).
(3) Let q ∈ S . If the linear map Rq from (2.16) is restricted to T0, then Rq : T0 → T0 is a linear

isomorphism with inverse given by (Rq|T0 )−1(u) =�0[ u
q ] for all u ∈ T0.

(4) If Rc is viewed as an abelian group, then exp: Rc × S → S given by (v, p) 
→ expp(v)
defines a Lie-group action, that is,

expp(v+ u) = expexpp(u)(v) and expp(0) = p for all v, u ∈ T0 and p ∈ S . (3.4)

Furthermore, the following identities follow for all p, q, a ∈ S and v ∈R
c

expp(v) = expq

(
v+ exp−1

q (p)
)

(3.5a)

exp−1
q (p) = − exp−1

p (q) (3.5b)

exp−1
q (a) = exp−1

p (a) − exp−1
p (q). (3.5c)

Proof (1): We have Expp(v+ λp) = Expp(v) for every p ∈ S , v ∈ T0 and λ ∈R, as a simple
computation using definition (2.19a) of Expp directly shows. Therefore, for every v ∈ T0,

expp(v) = Expp(Rpv) = Expp(pv − 〈v, p〉p) = Expp(pv) = pev

〈p, ev〉 . (3.6)

If we restrict expp to T0, then an inverse is explicitly given by (2.19c). The differentials (3.3)
result from a standard computation.

(2): The formula is a direct consequence of the formulas for Exp−1
p and exp−1

p given in (2.19b)
and (2.19c), together with the fact (2.17).

(3): Fix any p ∈ S and set vq := exp−1
p (q) for q ∈ S . Since expp : T0 → S is a diffeomorphism,

the differential d expp(vq) : T0 → T0 is an isomorphism. By (3.3), we have Rq[u] = Rexpp(vq)[u] =
d expp(vq)[u] for all u ∈ T0, showing that Rq is an isomorphism with the corresponding inverse.

(4): Properties (3.4) defining the group action are directly verified using (3.2). Now, sup-
pose p, q, a ∈ S and v ∈R

c are arbitrary. Since expq : T0 → S is a diffeomorphism, we have
p = expq

(
exp−1

q (p)
)

and by the group action property

expp(v) = exp
expq

(
exp−1

q (p)
)(v) = expq

(
v+ exp−1

q (p)
)
, (3.7)

which proves (3.5a). To show (3.5b), set va := exp−1
p (a) and substitute this vector into (3.5a).

Applying exp−1
q to both sides then gives

exp−1
q (a) = exp−1

q

(
expp(va)

)= va + exp−1
q (p) = exp−1

p (a) + exp−1
q (p). (3.8)

Setting a = q in this equation, we obtain (3.5b) from

0 = exp−1
q (q) = exp−1

p (q) + exp−1
q (p). (3.9)

Using exp−1
q (p) = − exp−1

p (q) in (3.8) yields (3.5c).
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580 F. Savarino and C. Schnörr

Lemma 3.2 The ith component of the similarity map S(W ) defined by (2.29) can equivalently be
expressed as

Si (W ) = exp1S

(∑
j∈Ni

ωij

(
exp−1

1S (Wj) − 1

ρ
DF ;j

))
for all i ∈ I and W ∈W . (3.10)

Proof Consider the expression Exp−1
Wi

(
Lj(Wj)

)
in the sum of the definition (2.29) of Si (W ).

Using (3.2) and (3.5a), the likelihood (2.27) can be expressed as

Lj(Wj) = expWj

(
− 1

ρ
DF ;j

)
= expWi

(
exp−1

Wi
(Wj) − 1

ρ
DF ;j

)
. (3.11)

In the following, we set

Vk = exp−1
1S (Wk) for all k ∈ I. (3.12)

With this and (3.5c), we have

exp−1
Wi

(Wj) = exp−1
1S (Wj) − exp−1

1S (Wi) = Vj − Vi. (3.13)

The two previous identities and Lemma 3.1(2) give

Exp−1
Wi

(
Lj(Wj)

)= RWi

[
exp−1

Wi

(
Lj(Wj)

)]= RWi

[
exp−1

Wi
(Wj) − 1

ρ
DF ;j

]
(3.14a)

= RWi

[
Vj − Vi − 1

ρ
DF ;j

]
. (3.14b)

The sum over the neighbouring nodes Ni in the definition (2.29) of Si (W ) can therefore be
rewritten as

∑
j∈Ni

ωij Exp−1
Wi

(
Lj(Wj)

)=
∑
j∈Ni

ωijRWi

[
Vj − Vi − 1

ρ
DF ;j

]
(3.15a)

= RWi

[
− Vi +

∑
j∈Ni

ωij

(
Vj − 1

ρ
DF ;j

)]
, (3.15b)

where we used
∑

j∈Ni
ωij = 1 for the last equation. Setting Yi :=∑

j∈Ni
ωij

(
Vj − 1

ρ
DF ;j

)
, we then

have

Si (W ) = ExpWi

(
RWi

[− Vi + Yi

])= expWi

(− Vi + Yi

)= exp1S
(
Yi

)
, (3.16)

where the last equality again follows from (3.5a) together with the definition (3.12) of Vi.

Lemma 3.3 The ith component of the differential of the similarity map S(W ) ∈W is given by

dSi (W )[X ] =
∑
j∈Ni

ωijRSi (W )

[
Xj

Wj

]
for all X ∈ T0 and i ∈ I. (3.17)
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Continuous-domain assignment flow 581

Furthermore, the ith component of the adjoint differential dS(W )� : T0 → T0 with respect to the
standard Euclidean inner product on T0 ⊂R

n×c is given by

dSi (W )�[X ] =
∑
j∈Ni

ωji�0

[
RSj(W )Xj

Wi

]
for every X ∈ T0 and i ∈ I. (3.18)

Proof Define the map Fi : W →R
c by Fi (W ) :=∑

j∈Ni
ωij

(
exp−1

1S (Wj) − 1
ρ

DF ;j

)
∈R

c for all

W ∈W . Let γ : (−ε, ε) →W be a smooth curve, with ε > 0, γ (0) = W and γ̇ (0) = X . By (3.3),
we then have

dFi (W )[X ] = d

dt
Fi (γ (t))

∣∣
t=0

=
∑
j∈Ni

ωij
d

dt
exp−1

1S (γj(t))
∣∣

t=0
=
∑
j∈Ni

ωij�0

[
Xj

Wj

]
. (3.19)

Due to Lemma 3.2, we can express the ith row of the similarity map as Si (W ) = exp1S
(
Fi (W )

)
.

Therefore, the differential of Si is given by

dSi (W )[X ] = d exp1S (Fi (W ))
[
dFi (W )[X ]

]= Rexp1S (Fi (W ))
[
dFi (W )[X ]

]
(3.20a)

= RSi (W )

[∑
j∈Ni

ωij�0

[
Xj

Wj

]]
=
∑
j∈Ni

ωijRSi (W )

[
Xj

Wj

]
, (3.20b)

where we used RSi (W )�0 = RSi (W ) from (2.17) to obtain the last equation.
Now let W ∈W and X , Y ∈ T0 be arbitrary. By assumption on the neighbourhood structure

(2.7), we have j ∈Ni if and only if i ∈Nj, that is, ψNi(j) =ψNj (i). Since RSi (W ) ∈R
c×c is a

symmetric matrix, we obtain

〈dS(W )[X ], Y 〉 =
∑
i∈I

〈dSi (W )[X ], Yi〉 =
∑
i∈I

∑
j∈Ni

ωij

〈
RSi (W )

[
Xj

Wj

]
, Yi

〉
(3.21a)

=
∑
i∈I

∑
j∈I

ψNi (j)ωij

〈
Xj

Wj
, RSi (W )[Yi]

〉
=
∑
i∈I

∑
j∈I

ψNj (i)ωij

〈
Xj,

RSi (W )[Yi]

Wj

〉

(3.21b)

=
∑
j∈I

∑
i∈Nj

ωij

〈
Xj,�0

[
RSi (W )[Yi]

Wj

]〉
=
∑
j∈I

〈
Xj,

∑
i∈Nj

ωij�0

[
RSi (W )[Yi]

Wj

]〉
.

(3.21c)

On the other hand, we have

〈dS(W )[X ], Y 〉 = 〈
X , dS(W )�[Y ]

〉=∑
j∈I

〈
Xj, dSj(W )�[Y ]

〉
. (3.22)

Because (3.21) and (3.22) hold for all X , Y ∈ T0, the formula for dSi (W )�[X ] is proven.

In order to prepare the main result of this section, the non-existence of a potential, we first
prove a technical statement based on the assumption that all neighbourhoods contain at least
three vertices, that is,

|Ni| ≥ 3, for all i ∈ I. (3.23)

In almost all practical situations, this will be the case.
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582 F. Savarino and C. Schnörr

Lemma 3.4 Suppose assumption (3.23) holds and let i, j ∈ I be two vertices with j ∈Ni. Then,
for any p ∈ S , there is a point W ∈W such that the equations

Sj(W ) = Wi, Si (W ) = 1S , Wj = p (3.24)

hold.

Proof Due to the additional assumption (3.23), there is an r ∈Ni with r �= i, j. For all k ∈ I with
k �= r, i, j, the rows Wk ∈ S can be chosen arbitrarily, for example, Wk = 1S . As Wj = p has to
hold, we can only vary Wi and Wr in order to satisfy the remaining two conditions. To this end,
parametrise

Wi = exp1S (a) and Wr = exp1S (b) with a, b ∈ T0. (3.25)

In the following, two linear equations are derived for determining the values for a and b. Due to
r ∈Ni and Lemma 3.2, applying exp−1

1S to Si (W ) yields

exp−1
1S

(
Si (W )

)=
∑
k∈Ni

ωik

(
exp−1

1S (Wk) − 1

ρ
DF ;k

)
=ωiia +ωirb + α, (3.26)

where α ∈ T0 collects all terms not involving a or b. Thus, the second condition (3.24) is
equivalent to

0 = exp−1
1S

(
1S

)=ωiia +ωirb + α. (3.27)

Regarding the transformation of the first condition (3.24), note that although r, j ∈Ni, the
inclusion r ∈Nj does not necessarily hold. Thus, applying exp−1

1S to Sj(W ) leads to

exp−1
1S

(
Sj(W )

)=
∑
k∈Nj

ωjk

(
exp−1

1S (Wk) − 1

ρ
DF ;k

)
=ωjia +ψNj (r)ωjrb + β, (3.28)

where β ∈ T0 again collects all terms not involving a or b, and ψNj is the indicator function
defined in Section 2.1. Replacing Sj(W ) by Wi on the left-hand side of (3.28) due to the first
condition (3.24), and using the first relation (3.25), we obtain

a = exp−1
1S

(
Wi

)= exp−1
1S

(
Sj(W )

)=ωjia +ψNj (r)ωjrb + β. (3.29)

Using (3.26) to solve for a and substituting the result into (3.29) to solve for b yield the unique
solution

b = (
(1 −ωji)ωir +ψNj (r)ωjrωii

)−1(
ωiiβ + (1 −ωji)α

)
, (3.30a)

a = −ω−1
ii

(
ωirb + α

)
, (3.30b)

which proves the existence of a W ∈W satisfying (3.24).

We are now prepared to prove non-existence of a potential for the assignment flow. This
will be done under the additional assumption that for at least one node i the corresponding dis-
tance vector DF ;i (2.25) is not constant, that is, there is at least one preferred label choice based
just on the given data and prototypes, at some vertex. As any measured data in reality contain
measurement noise, this assumption is almost always fulfilled in practice.
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Continuous-domain assignment flow 583

Theorem 3.5 (Non-existence of a potential) Suppose assumption (3.23) holds and there exists a
node i ∈ I such that the distance vector DF ;i is not constant, that is, DF ;i /∈R1. Then no potential
J : W →R exists satisfying

RW S(W ) = − grad J (W ), (3.31)

that is, the assignment flow (2.32) is not a Riemannian gradient descent flow with respect to the
Fisher–Rao metric

Proof To simplify notation during the proof, we write Dj instead of DF ;j for the jth row of
the distance matrix. To prove the statement, we show the contrapositive: if a potential J exists
for the assignment flow, then for every j ∈ I the distance vector Dj needs to be constant, that
is, Dj ∈R1c. Therefore, suppose a potential J exists and let j ∈ I be arbitrary. The proof of
Dj ∈R1c is subdivided into two steps. First, the necessary condition (3.41) at vertex j is derived
using Lemma 3.4. Second, based on this condition, Dj ∈R1 is shown via a limiting process.

Step 1: By (2.17), we have RW S(W ) = RW�0S(W ) and RW : T0 → T0 is a linear isomorphism
(Lemma 3.1(3)). Therefore, we can get rid of the replicator operator in (3.1) by applying
(RW |T0 )−1 to both sides of the equation, that is,

RW S(W ) = − grad J (W )
(3.1)= −RW ∂ J (W ) ⇔ �0S(W ) = −�0 ∂ J (W ) ∈ T0. (3.32)

The negative Euclidean Hessian of J is then given by

−�0 Hess J (W ) = d
(−�0 ∂ J

)
(W )

(3.32)= d(�0 ◦ S)(W ) =�0dS(W ) = dS(W ), (3.33)

where the last equality follows from dS(W ) : T0 → T0. Furthermore, Hess J (W ) and therefore
also dS(W ) must be symmetric with respect to the Euclidean inner product on T0. Thus, under
the assumption that a potential J exists, dS(W )[X ] − dS(W )�[X ] = 0 holds, or equivalently

dSi (W )[X ] − dSi (W )�[X ] = 0 for every i ∈ I. (3.34)

For the following, choose any i ∈Nj and fix it. By (2.8), we have j ∈Ni. Next, let p ∈ S be
arbitrary. According to Lemma 3.4, there exists a W (p) ∈W with

Sj(W
(p)) = W (p)

i , Si (W (p)) = 1S and W (p)
j = p. (3.35)

For l, s ∈ [c], set

u := es − el ∈ T0, (3.36)

with es, el ∈Bc and define the tangent vector

X u ∈ T0 with X u =
{

u, if k = j

0, if k �= j.
for all k ∈ I. (3.37)
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584 F. Savarino and C. Schnörr

Due to the expressions for dSi (W (p)) and dSi (W (p))� from Lemma 3.3 and as a consequence of
the choice of X u, we obtain

dSi

(
W (p)

)
[X u] − dSi

(
W (p)

)�
[X u] = ωijRSi (W (p))

[
u

W (p)
j

]
−ωji�0

[
RSj(W (p))u

W (p)
i

]
(3.38a)

(3.35)= ωijR1S

[
u

p

]
−ωji�0

[
u − 〈u, Sj(W

(p))〉1c

]
, (3.38b)

and because of �0[1c] = 0 together with the identity R1S = c−1�0 from (2.17), we further get

= �0
[(

c−1ωijp
−1 −ωji1c

)
u
] (3.34)= 0. (3.38c)

Temporarily setting

z := c−1ωijp
−1 −ωji1c, (3.39)

Equation (3.38c) reads 0 =�0[zu]. As a consequence of the fact that �0 is the orthogonal pro-
jection onto T0 and u2 = u u = el + es (componentwise multiplication) by the definition of u in
(3.36), it follows that

0 = 〈
�0[zu], u

〉= 〈
uz, u

〉= 〈
z, u2〉 = zl + zs. (3.40)

Substituting (3.39) back into (3.40) finally gives the desired condition

0 = c−1ωij

(
p−1

l − p−1
s

)− 2ωji for all l, s ∈ [c], p ∈ S , i ∈Nj. (3.41)

Step 2: Let τ > 0 be arbitrary and set

p := exp1S

(
1

τ
Dj

)
= e

1
τ Dj〈

e
1
τ Dj , 1c

〉 . (3.42)

Using this definition of p in (3.41) and rearranging the resulting equation yield

1 = (2cωji)
−1ωij

〈
e

1
τ Dj , 1c

〉 (
e− 1

τ Djl + e− 1
τ Djs

)
(3.43)

for all l, s ∈ [c]. Applying the log on both sides and multiplying by τ gives

0 = τ log
(
(2cωji)

−1ωij

)+ τ log
〈
e

1
τ Dj , 1c

〉
+ τ log

(
e− 1

τ Djl + e− 1
τ Djs

)
. (3.44)

for all τ > 0. By [25, Example 1.30],

lim
τ→0

τ log
〈
e

1
τ x, 1c

〉
= max

k∈[d]
xk (3.45)

holds for any x ∈R
d . Therefore, taking the limit τ → 0 in (3.44) results in the condition

0 = max
k∈[c]

Djk + max{−Djl, −Djs} = max
k∈[c]

Djk − min
{
Djl, Djs

}
. (3.46)

To finish the proof, let l ∈ argmaxk∈[c] Djk and s ∈ [c] be arbitrary. Then,

Djl = max
k∈[c]

Djk = min{Djl, Djs} = Djs, for all s ∈ [c], (3.47)

proving that Dj ∈R1c.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792520000273
Downloaded from https://www.cambridge.org/core. Universitaet Heidelberg, on 14 May 2021 at 19:26:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792520000273
https://www.cambridge.org/core


Continuous-domain assignment flow 585

3.2 S-parametrisation

Even though Theorem 3.5 says that no potential exists for the assignment flow in general, we
reveal in this section a ‘hidden’ potential flow under an additional assumption. To this end, we
decouple the assignment flow into two components and show that one component depends on the
second one. The dominating second one, therefore, provides a new parametrisation of the assign-
ment flow. Assuming symmetry of the averaging matrix defined below by (3.48), the dominating
flow becomes a Riemannian gradient descent flow. The corresponding potential defined on a
continuous domain will be studied in subsequent sections.

For notational efficiency, we collect all weights (2.28) into the averaging matrix

	ω ∈R
n×n with	ωij :=ψNi(j)ωij =

{
ωij if j ∈Ni,

0 else
, for i, j ∈ I. (3.48)

	ω encodes the spatial structure of the graph and the weights. For an arbitrary matrix M ∈R
n×c,

the average of its row vectors using the weights indexed by the neighbourhood Ni is given by∑
k∈Ni

ωikMk =
∑
k∈I

	ωikMk = (	ωM)i. (3.49)

Thus, all row vector averages are given as row vectors of the matrix 	ωM ∈R
n×c.

We now introduce a new representation of the assignment flow.

Proposition 3.6 The assignment flow (2.32) is equivalent to the system

Ẇ = RW [S] with W (0) = 1W (3.50a)

Ṡ = RS[	ωS] with S(0) = S(1W ). (3.50b)

Remark 3.7 We observe that the flow W (t) is completely determined by S(t). In the following,
we refer to the dominating part (3.50b) as the S-flow.

Proof Let W (t) be a solution of the assignment flow, that is, Ẇi = RWi Si (W ) for all i ∈ I. Set
S(t) := S(W (t)). Then, (3.50a) is immediate from the assumption on W . Using the expression for
dSi (W ) from Lemma 3.3 gives

Ṡi = d

dt
S(W )i = dSi (W )[Ẇ ] =

∑
j∈Ni

ωijRSi (W )

[
Ẇj

Wj

]
. (3.51)

Since W solves the assignment flow and RSi (W ) = RSi (W )�0 by (2.17) with ker(�0) =R1c, it
follows using the explicit expresssion (2.16) of RSi (W ) that

RSi (W )

[
Ẇj

Wj

]
= RSi (W )

[
RWj Sj(W )

Wj

]
= RSi (W )

[
Sj(W ) − 〈Wj, Sj(W )〉1c

]
(3.52a)

= RSi (W )
[
Sj(W )

]
. (3.52b)
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586 F. Savarino and C. Schnörr

FIGURE 2. Illustration of the S-flow (3.50b) using the geometric Euler scheme (3.55) for numerical integra-
tion. Parameter values: ρ = 0.1 and hk = h = 0.1, for every iteration k. Top, from left to right: Ground truth,
noisy input data, iterate S(2000) and the corresponding integral labelling Ŝ resulting from S(2000) by rounding
to the nearest integral label at each pixel, that is, choosing argmaxr∈[c] S(2000)

ir , for every i ∈ I. The remaining
minimal noise at the boundary of S(2000) is a result from the higher centre weight ωii due to the symmetrisa-
tion of the uniform weights (3.54). Bottom, from left to right: The iterates S(10), S(50), S(100) and S(200). The
sequence S(k) converges fairly quickly in the first 200 iterations to a reasonable partition. However, 1800
additional iterations are needed to eliminate most of the still visible very small blob-like assignments. On
the other hand, each iteration only requires local communication and hence can be efficiently carried out
using graphics processing units (GPUs).

Back-substitution of this identity into (3.51), pulling the linear map RSi (W ) out of the sum and
keeping Si (W ) = Si in mind result in

Ṡi = RSi

⎡
⎣∑

j∈Ni

ωijSj

⎤
⎦= RSi

[(	ωS)i] for all i ∈ I. (3.53)

Collecting these vectors as row vectors of the matrix Ṡ gives (3.50b).

Remark 3.8 Henceforth, we write S for the S-flow S to stress the underlying connection to the
assignment flow and to simplify the notation.

The basic behaviour of the S-flow is illustrated by the following numerical experiment, shown
as Figure 2. There are 31 labels visualised by 31 colours. The colour of each pixel of ‘ground
truth’ represents a vertex (unit vector) of the corresponding probability simplex. The �1-norm was
used to compute the distance matrix. We adopted this experiment from [6, Figure 6] because the
uniform distances between labels enable to assess the regularisation properties of the assignment
flow in an unbiased way.

The spatial 256 × 256 pixel grid is represented by a grid graph with vertex set I = [256] ×
[256]. The neighbourhood Ni at pixel i is given by all pixels j ∈ I contained in the 5 × 5 pixel
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Continuous-domain assignment flow 587

patch centred at i. For pixels i sufficiently far inside the image, this results in |Ni| = 5 × 5, while
|Ni|< 5 × 5 for pixels close to the boundary. For example, |Ni| = 9< 25 at the upper left cor-
ner pixel i. Due to these boundary effects in terms of neighbourhood sizes, symmetric uniform
weights defined by

ωij :=

⎧⎪⎨
⎪⎩

1

52
, for i �= j

1

52

(
1 + 52 − |Ni|

)
, for i = j

(3.54)

were used. This results in uniform weights ωij = 1
52 for i ∈ I in the interior and suitable adjust-

ments at pixels i at or close to the boundary, while preserving the overall symmetry of the
weights, that is, ωij =ωji, which will become relevant below. Due to this symmetrisation, bound-
ary pixels have a higher centre weight ωii, e.g. ωii = 17/52 = 0.68 for the upper-left corner pixel i.

For numerically integrating the S-flow (3.50b) on W , the basic geometric Euler method from
[35] was used. The corresponding numerical update scheme is given by

S(k+1) = expS(k)

(
hk	

ωS(k)
)

S(0) := S(0) = S(1W ), (3.55)

with step size hk > 0. All relevant parameter values are specified in the caption of Figure 2.
We next show that the S-flow which essentially determines the assignment flow (Remark 3.8)

becomes a Riemannian descent flow under the additional assumption that the averaging matrix
(3.48) is symmetric.

Proposition 3.9 Suppose the weights defining the similarity map in (2.29) are symmetric, that
is, (	ω)� =	ω. Then the S-flow (3.50b) is a Riemannian gradient descent flow Ṡ = − grad J (S),
induced by the potential

J (S) := −1

2
〈S,	ωS〉, S ∈W . (3.56)

Proof Let γ : (−ε, ε) →W , ε > 0, be any smooth curve with γ̇ (0) = V ∈R
n×c and γ (0) = S.

By the symmetry of 	ω, we have 〈∂ J (S), V 〉 = dJ (S)[V ] = d
dt J (γ (t))

∣∣
t=0

= −〈	ωS, V 〉 for all
V ∈R

n×c. Therefore, ∂ J (S) = −	ωS. Thus, the Riemannian gradient is given by grad J (S) =
RS[∂ J (S)] = −RS[	ωS].

Since the weights in the above experiment of Figure 2 are symmetric, this experiment also
provides an example of the Riemannian gradient S-flow induced by the potential (3.56). Next,
consider

LG = In −	ω, (3.57)

where In ∈R
n×n is the identity matrix. Since In = Diag(	ω1n) by (2.28) is the degree matrix of

the symmetric averaging matrix 	ω, LG can be regarded as Laplacian (matrix) of the underlying
undirected weighted graph G = (I, E)1. For the analysis of the S-flow, it will be convenient to
rewrite the potential (3.56) accordingly.

1For undirected graphs, the graph Laplacian is commonly defined by the weighted adjacency matrices
with diagonal entries 0, whereas 	ω

ii =ωii > 0. The diagonal entries do not affect the quadratic form (3.58),
however.
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588 F. Savarino and C. Schnörr

Proposition 3.10 Under the assumption of Proposition 3.9, the potential (3.56) can be written
in the form

J (S) = 1

2
〈S, LGS〉 − 1

2
‖S‖2 = 1

4

∑
i∈I

∑
j∈Ni

ωij‖Si − Sj‖2 − 1

2
‖S‖2. (3.58)

The matrix LG is symmetric, positive semidefinite and LG1n = 0.

Proof We have J (S) = − 1
2 〈S, (	ω − In)S〉 + 〈S, S〉 = 1

2 (〈S, LGS〉 − ‖S‖2). Thus, we focus on
the sum of (3.58).

First, note that ‖Sj − Si‖2 = 〈Sj, Sj − Si〉 + 〈Si, Si − Sj〉. Since ψNi (j) =ψNj (i) and ωij =ωji by
assumption, we have∑

i∈I

∑
j∈Ni

ωij〈Sj, Sj − Si〉 =
∑
i,j∈I

ψNi(j)ωij〈Sj, Sj − Si〉 =
∑
i,j∈I

ψNj (i)ωji〈Sj, Sj − Si〉 (3.59a)

=
∑
j∈I

∑
i∈Nj

ωji〈Sj, Sj − Si〉 =
∑
i∈I

∑
j∈Ni

ωij〈Si, Si − Sj〉, (3.59b)

where the last equality follows by renaming the indices i and j. Thus, using (2.28),∑
i∈I

∑
j∈Ni

ωij‖Si − Sj‖2 =
∑
i∈I

∑
j∈Ni

ωij〈Sj, Sj − Si〉 +
∑
i∈I

∑
j∈Ni

ωij〈Si, Si − Sj〉

= 2
∑
i∈I

∑
j∈Ni

ωij〈Si, Si − Sj〉 = 2
∑
i∈I

〈
Si, Si −

∑
j∈Ni

ωijSj

〉

= 2
∑
i∈I

〈Si, (LGS)i〉 = 2〈S, LGS〉.

(3.60)

The properties of LG follow from the symmetry of	ω, nonnegativity of the quadratic form (3.60)
and definition (3.57).

4 Continuous-domain variational approach

In this section, we study a continuous-domain variational formulation of the potential of
Proposition 3.10. We confine ourselves to uniform weights (2.28) and neighbourhoods (2.7)
that only contain the nearest neighbours of each vertex i, such that LG becomes the discretised
ordinary Laplacian. As a result, we consider the problem to minimise the functional

Eα : H1(M; Rc) →R, (4.1a)

Eα(S) :=
∫
M

‖DS(x)‖2 − α‖S(x)‖2dx, α > 0. (4.1b)

Throughout this section, M⊂R
2 is a simply connected bounded open subset in the Euclidean

plane. Parameter α controls the interaction between regularisation and enforcing integrality when
S(x), x ∈M is restricted to values in the probability simplex.

We prove well-posedness of problem (4.1) in Section 4.1 and consider Dirichlet boundary
conditions in Section 4.2. In the former case, the set of minimisers is stated explicitly. The gra-
dient descent flow corresponding to the latter case, initialised by means of given data and with
parameter value α = 1, may be seen as continuous-domain extension of the assignment flow,
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Continuous-domain assignment flow 589

that is parametrised according to Proposition 3.6 and operates at a small spatial scale in terms
of the size |Ni| of uniform neighbourhoods (2.7) in the discrete formulation (2.32). We illustrate
this by a numerical example (Section 4.3), based on discretising (4.1) and applying an algorithm
that mimics the S-flow and converges to a local minimum of the non-convex functional (4.1), by
solving a sequence of convex programs.

We point out that M could be turned into a Riemannian manifold using a metric that reflects
images features (edges, etc.), as was proposed with the Laplace–Beltrami framework for image
denoising [20]. In this work, however, we focus on the essential point that distinguishes image
denoising from image labeling, that is, the interaction of the two terms (4.1) that essentially is a
consequence of the information geometry of the assignment manifold W (2.21).

4.1 Well-posedness

Based on (2.3), we define the closed convex set

D1(M) := {S ∈ H1(M; Rc) : S(x) ∈�c a.e. in M} (4.2)

and focus on the variational problem

inf
S∈D1(M)

Eα(S), (4.3)

with Eα given by (4.1). Eα is smooth but non-convex. We specify the set of minimisers
(Proposition 4.2). Recall notation (2.1).

Lemma 4.1 Let p ∈�c. Then, ‖p‖ = 1 if and only if p ∈Bc.

Proof The ‘if’ statement is obvious. As for the ‘only if’, suppose p �∈Bc, that is, pi < 1 for all
i ∈ [c]. Then, p2

i < pi and ‖p‖2 < ‖p‖1 = 1.

Proposition 4.2 The functional Eα : D1(M) →R given by (4.1) is lower bounded,

Eα(S) ≥ −α Vol(M)>−∞, ∀S ∈ D1(M). (4.4)

This lower bound is attained at some point in

arg min
S∈D1(M)

Eα(S) =
{

{Se1 , . . . , Sec}, if α > 0,

{Sp : M→� : p ∈�}, if α = 0,
(4.5)

where, for any p ∈�, Sp denotes the constant vector field x 
→ Sp(x) = p.

Proof Let p ∈�. Then, ‖p‖2 ≤ ‖p‖1 = 1. It follows for S ∈ D1(M) that

Eα(S) ≥ −α‖S‖2
M ≥ −α‖1‖M = −α Vol(M), (4.6)

which is (4.4).
We next show that the right-hand side of (4.5) specifies minimisers of Eα . For any p ∈�,

the constant vector field Sp is contained in D1(M). Consider specifically Sei , i ∈ [c]. Since
‖Sei (x)‖ = ‖ei‖ = 1 and DSei ≡ 0, the lower bound is attained, Eα(Sei ) = −α Vol(M), and the
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590 F. Savarino and C. Schnörr

functions {Se1 , . . . , Sec} minimise Eα , for every α ≥ 0. If α= 0, then the constant functions Sp

are minimisers as well, for any p ∈�, since then

Eα(Sp) = ‖DSp‖2
M = 0 = −0 · Vol(M). (4.7)

We conclude by showing that no minimisers other than (4.5) exist. Let S∗ ∈ D1(M) be another
minimiser of Eα with Eα(S∗) = −α Vol(M). We distinguish the two cases α= 0 and α > 0.

If α = 0, then S∗ satisfies (4.7) and ‖DS∗‖2
M = 0. Since ‖DS∗;i‖M ≤ ‖DS∗‖M = 0 for every

i ∈ [c], S∗ is constant by Lemma 2.3, that is, a p ∈� exists such that S∗ = Sp a.e.
If α > 0, then using the equation Eα(S∗) = −α Vol(M) and ‖S∗(x)‖2 ≤ 1 gives

α Vol(M) ≤ ‖DS∗‖2
M + α Vol(M) = ‖DS∗‖2

1;M − Eα(S∗) = α‖S∗‖2
M (4.8a)

≤ α‖1‖M = α Vol(M), (4.8b)

which shows ‖DS∗‖M = 0 and hence by Lemma 2.3 again S∗ = Sp for some p ∈�. The pre-
ceding inequalities also imply Vol(M) = ‖S∗‖2

M, that is, ‖S∗(x)‖ = 1 a.e. By Lemma 4.1, we
conclude S∗ = Sp with p ∈Bc, that is, S∗ ∈ {Se1 , . . . , Sec}.

Proposition 4.2 highlights the effect of the concave term of the objective Eα (4.1): labellings
are enforced in the absence of data. Below, the latter are taken into account (i) by imposing
non-zero boundary conditions and (ii) by initialising a corresponding gradient flow (Section 4.3).

4.2 Fixed boundary conditions

In this section, we consider the case where boundary conditions are imposed by restricting the
feasible set of problem (4.3) to

A1
g(M) := {S ∈D1(M) : S − g ∈ H1

0 (M; Rc)} = (
g + H1

0 (M; Rc)
)∩D1(M), (4.9)

for some fixed g that prescribes simplex-valued boundary values (in the trace sense). As inter-
section of a closed affine subspace and a closed convex set, A1

g(M) is closed convex. A
straightforward and reasonable choice of g is the given data Li(1S ) lifted to the assignment
manifold by means of the likelihood map (2.27), at boundary points i ∈ I. We point out that
besides making the problem well-posed, including the subproblems of the algorithm introduced
in Section 4.3, the boundary condition has only a minor effect on local minimisers, as will
be demonstrated numerically below. Employing Neumann boundary conditions is also a viable
choice.

Weak lower semicontinuity is a key property for proving the existence of minimisers. In the
case of Eα (4.1) this is not immediate, due to the lack of convexity.

Proposition 4.3 The functional Eα given by (4.1) is weak sequentially lower semicontinuous
on A1

g(M), that is, for any sequence (Sn)n∈N ⊂A1
g(M) weakly converging to S ∈A1

g(M), the
inequality

Eα(S) ≤ lim inf
n→∞ Eα(Sn) (4.10)

holds.
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Continuous-domain assignment flow 591

Proof Let Sn ⇀ S converge weakly in A1
g(M) ⊂ H1

0 (M; Rc). Then, by Proposition 2.4(c),

‖S‖1;M ≤ lim inf
n→∞ ‖Sn‖1;M. (4.11)

Since S, Sn ∈A1
g(M), we also have (Sn − g)⇀ (S − g) in H1

0 (M; Rc) by (4.9) and con-
sequently Sn → S strongly in L2(M; Rc) due to (2.38). Taking into account (4.11) and
lim infn→∞ ‖Sn‖M = limn→∞ ‖Sn‖M = ‖S‖M, we obtain

Eα(S) = ‖S‖2
1;M − (1 + α)‖S‖2

M ≤ lim inf
n→∞ ‖Sn‖2

1;M + lim inf
n→∞

(− (1 + α)‖Sn‖2
M
)

(4.12a)

≤ lim inf
n→∞ Eα(Sn). (4.12b)

We are now prepared to show that Eα attains its minimal value on A1
g(M), following the basic

proof pattern of [32, Chapter 38].

Theorem 4.4 Let Eα be given by (4.1). There exists S∗ ∈A1
g(M) such that

E∗
α := Eα(S∗) = inf

S∈A1
g(M)

Eα(S). (4.13)

Proof Let (Sn)n∈N ⊂A1
g(M) be a minimising sequence such that

lim
n→∞ Eα(Sn) = E∗

α . (4.14)

Then there exists some sufficiently large n0 ∈N such that

1 + E∗
α ≥ Eα(Sn) = ‖Sn‖2

1;M − (1 + α)‖Sn‖2
M, ∀n ≥ n0. (4.15)

Since Sn(x) ∈� for a.e. x ∈M, we have ‖Sn‖2
M ≤ Vol(M) and hence obtain

‖Sn‖2
1;M ≤ 1 + E∗

α + (1 + α)‖Sn‖2
M ≤ 1 + E∗

α + (1 + α) Vol(M), ∀n ≥ n0. (4.16)

Thus, the sequence (Sn)n∈N ⊂ H1(M; Rc) is bounded and, by Proposition 2.4(b), we may extract
a weakly converging subsequence Snk ⇀ S∗ ∈ H1(M; Rc). Since A1

g(M) ⊂ H1(M; Rc) is closed
convex, Proposition 2.4(a) implies S∗ ∈A1

g(M). Consequently, by Proposition 4.3 and (4.14),

Eα(S∗) ≤ lim inf
k→∞

Eα(Snk ) = lim
k→∞

Eα(Snk ) = E∗
α , (4.17)

which implies Eα(S∗) = E∗
α , that is, S∗ ∈A1

g(M) minimises Eα .

4.3 Numerical algorithm and example

We consider the variational problem (4.13)

inf
S∈A1

g(M)

∫
M

‖DS‖2 − α‖S‖2dx, (4.18)

for some fixed g specifying the boundary values S|∂M = g|∂M, and the problem to com-
pute a local minimum numerically using an optimisation scheme that mimics the S-flow of
Proposition 3.6.
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592 F. Savarino and C. Schnörr

Based on (4.9), we rewrite the problem in the form

inf
f ∈H1

0 (M;Rc)

{
‖D(g + f )‖2

M − α‖g + f ‖2
M + δD1(M)(g + f )

}
(4.19a)

= inf
f ∈H1

0 (M;Rc)

{
‖Df ‖2

M + 2〈Dg, Df 〉M − α
(‖f ‖2

M + 2〈g, f 〉M
)+ δD1(M)(g + f )

}
+ C,

(4.19b)

where the last constant C collects terms not depending on f . We discretise the problem as fol-
lows. f becomes a vector f ∈R

c n with n = |I| subvectors fi ∈R
c, i ∈ I or alternatively with

c = |J | subvectors f j, j ∈J . The inner product 〈g, f 〉M is replaced by 〈g, f 〉 =∑
i∈[n]〈gi, fi〉 =∑

j∈[c]〈gj, f j〉. We keep the symbols f , g for simplicity and indicate the discretised setting by the
subscript n as introduced next.

D becomes a gradient matrix Dn that estimates the gradient of each subvector f j separately,
such that

Ln f := D�
n Dn f (4.20)

is the basic discrete five-point stencil Laplacian applied to each subvector f j. The feasible set
D1(M) is replaced by the closed convex set

Dn := {f ≥ 0: 〈1c, fi〉 = 1, ∀i ∈ I}. (4.21)

Thus the discretised problem reads

inf
f

{
‖Dn f ‖2 + 2〈Lng − αg, f 〉 − α‖ f ‖2 + δDn (g + f )

}
. (4.22)

Having computed a local minimum f∗, the corresponding local minimum of (4.18) is S∗ = g + f∗.
In order to compute f∗, we applied the proximal forward–backward scheme

f (k+1) = arg min
f

{
‖Dn f ‖2 + 2〈Lng − α(g + f (k)), f 〉 + 1

2τk
‖ f − f (k)‖2 + δDn(g + f )

}
, k ≥ 0,

(4.23)
with proximal parameters τk , k ∈N and initialisation f (0)

i , i ∈ I specified further below. The iter-
ative scheme (4.23) is a special case of the PALM algorithm [8, Section 3.7]. Ignoring the
proximal term, each problem (4.23) amounts to solve c (discretised) Dirichlet problems with
the boundary values of gj, j ∈ [c] imposed, and with right-hand sides that change during the iter-
ation since they depend on f (k). The solutions ( f j)(k), j ∈J to these Dirichlet problems depend
on each other, however, through the feasible set (4.21). At each iteration k, problem (4.23) can
be solved by convex programming. The proximal parameters τk act as step sizes such that the
sequence f (k) does not approach a local minimum too rapidly. Then the interplay between the
linear form that adapts during the iteration and the regularising effect of the Laplacians can find
a labelling (partition) corresponding to a good local optimum.

As for g, we chose gi = Li(1S ), i ∈ I at boundary vertices i and gi = 0 at every interior vertex i.
Consequently, with the initialisation f (0)

i = Li(1S ), i ∈ I at interior vertices (the boundary values
of f are zero), the sequence S(k) = g + f (k) mimics the S-flow of Proposition 3.6 where the given
data also show up in the initialisation S(0) only.

Figure 3 provides an illustration using the experimental setup from Figure 2. Comparing the
result depicted by Figure 3 with Figure 2 confirms that the continuous-domain formulations
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Continuous-domain assignment flow 593

FIGURE 3. Evaluation of the numerical scheme (4.23) that mimics the S-flow of Proposition 3.6. Parameter
values: α = 1 and τk = τ = 10, ∀k. Top, from left to right: Ground truth, noisy input data f (0), iterate f (100)

and the approximate local minimiser f̂∗ resulting from f (100) by a trivial rounding step. S(k) = f (k) + g differs
from f (k) by the boundary values corresponding to the noisy input data. Inspecting the values of f (100) close
to the boundary shows that the influence of boundary noise is minimal. Bottom, from left to right: The iter-
ates f (10), f (20), f (30), f (40). Taking into account rounding as post-processing step, the sequence f (k) quickly
converges after rounding to a reasonable partition. About 50 more iterations are required to fix the values at
merely few hundred remaining pixels. Slight rounding of the geometry of the components of the partition,
in comparison to ground truth, corresponds to using uniform weights (2.28) for the assignment flow.

discussed above represents the assignment flow at a small spatial scale. The two numerical
approaches are quite different, however. While geometric numerical integration employs many
steps with only local explicit interactions of variables, the proximal iteration (4.23) entails global
communication of the variables at each iteration through solving a linear PDE together with a
pointswise simplex constraint. As a result, a one order of magnitude smaller number of (more
expensive) iterations is required to converge.

4.4 A PDE characterising optimal assignment flows

Proposition 4.5 Let S∗ solve the variational problem (4.18). Then, S∗ satisfies the variational
inequality

〈DS∗, DS − DS∗〉M − α〈S∗, S − S∗〉M ≥ 0, ∀S ∈A1
g(M). (4.24)

Proof Functional Eα given by (4.18) is Gateaux-differentiable with derivative

〈E′
α(S∗), S〉H−1(M;Rc)×H1

0 (M;Rc) = 2
(〈DS∗, S〉M − α〈S∗, S〉M

)
. (4.25)

The assertion follows from applying Theorem 2.5.
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594 F. Savarino and C. Schnörr

We conclude this section by deriving a PDE corresponding to (4.24), that a minimiser S∗ is
supposed to satisfy in the weak sense. The derivation is formal in that we adopt the unrealistic
regularity assumption

S∗ ∈A2
g(M), (4.26)

with A2
g(M) defined analogous to (4.9). While this will hold for the continuous-domain linear

problems corresponding to (4.23) at each step k of the iteration and for sufficiently smooth ∂M,
it will not hold in the limit k → ∞, since we expect (and wish) S∗ to become discontinuous,
contrary to the regularity assumption (4.26) and the continuity implied by the Sobolev embedding
theorem for M⊂R

d with d = 2. Nevertheless, since the PDE provides another interpretation of
the assignment flow, we state it – see (4.32) below – and hope it will stimulate further research.

In view of the assumption (4.26), set

S∗ = g + f∗, f∗ ∈ H2
0 (M; Rc). (4.27)

Inserting S∗ and S = g + h, h ∈ H1
0 (M; Rc), into (4.24) and partial integration, gives

〈−�S∗ − αS∗, h − f∗〉M ≥ 0, (4.28)

where �S∗ = (�S∗;1, . . . ,�S∗;c)� applies componentwise. Using the shorthands

να(S∗) = −�S∗ − αS∗, (4.29a)

μα(S∗) = να(S∗) − 〈να(S∗), S∗〉R21c, (4.29b)

where 〈να(S∗), S∗〉R2 denotes the function x 
→ 〈
να(S∗)(x), S∗(x)

〉
, x ∈M, we have

〈μα(S∗), S∗〉M = 0, (4.30a)

since 〈1c, S∗(x)〉 = 1 for a.e. x, and

〈μα(S∗), S〉M = 〈να(S∗), h − f∗〉M ≥ 0, (4.30b)

which is (4.28). Since S(x) ≥ 0 a.e. in M and may have arbitrary support, we deduce from
the inequality 〈μα(S∗), S〉M ≥ 0 and from the self-duality of the nonnegative orthant Rc+ that
μα(S∗) ≥ 0 a.e. in M. Since also S∗ ≥ 0 a.e., this implies that equation (4.30a) holds pointwise
a.e. in M:

μα(S∗)(x)S∗(x) = να(S∗)(x)S∗(x) − 〈
να(S∗)(x)S∗(x)

〉
S∗(x) = 0 a.e. in M. (4.31)

Substituting να(S∗), we deduce that a minimiser S∗ = g + f∗ characterised by the variational
inequality (4.24) weakly satisfies the PDE

RS∗ (−�S∗ − αS∗) = 0, (4.32)

where RS∗ defined by (2.16) applies RS∗(x) to vector (−�S∗ − αS∗)(x) at every x ∈M.

Remark 4.6 (Comments)

(1) We point out that computing a vector field S∗ satisfying (4.24) is difficult in practice, due to
the nonconvexity of problem (4.18). On the other hand, the algorithm proposed in Section 4.3
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in the result illustrated by Figure 3 shows that good suboptima can be computed by merely
solving a sequence of simple problems.

(2) As already pointed out at the beginning of this section, the derivation of the PDE (4.32) is
merely a formal one, due to the unrealistic regularity assumption (4.26). While the numerical
result (Figure 3) clearly reflects the desired piecewise constancy and discontinuity of S∗, this
property conflicts with assumption (4.26).

5 Conclusion

We presented a novel parametrisation of the assignment flow for contextual data classification
on graphs. The dominating part of the flow admits the interpretation as Riemannian gradient
flow with respect to the underlying information geometry, unlike the original formulation of
the assignment flow. A decomposition of the corresponding potential by means of a non-local
graph Laplacian makes explicit the interaction of two processes: regularisation of label assign-
ments and gradual enforcement of unambiguous decisions. The assignment flow combines these
aspects in a seamless way, unlike traditional approaches where solutions to convex relaxations
require postprocessing. It is remarkable that this behaviour is solely induced by the underlying
information geometry.

We studied a continuous-domain variational formulation as counterpart of the discrete
formulation restricted to a local discrete Laplacian (nearest neighbour interaction). A numer-
ical algorithm in terms of a sequence of simple linear elliptic problems reproduces results
that were obtained with the original formulation of the assignment flow using completely
different numerics (geometric ODE integration). This illustrates the derived mathematical
relations.

We outline three attractive directions of further research.

• We clarified in Section 4 that the inherent smooth setting of the assignment flow (2.32) trans-
lates under suitable assumptions to the sequence of linear (discretised) elliptic PDE problems
(4.23) together with a simple convex constraint. We did not touch on the limit problem,
however. More mathematical work is required here, cf. Remark 4.6.

Since the assignment flow returns image partitions when applied to image features on a
grid graph, the situation reminds us of the Mumford–Shah functional [23] – more precisely:
its restriction to piecewise constant functions – and its approximation by a sequence of �-
converging smooth elliptic problems [4]. Likewise, one may regard the concave second term
of (4.18) together with the convex constraint S ∈A1

g as a vector-valued counterpart of the
basic nonnegative double-well potential of scalar phase-field models for binary segmenta-
tion [28, 12]. In these works, too, non-smooth limit cases result from �-converging simpler
problems.

• Adopting the viewpoint of evolutionary dynamics [17] on label assignment, the assignment
flow may be characterised as spatially coupled replicator dynamics. To the best of our knowl-
edge, our paper [6] seems to be the first one that used information theory to formulate this
spatial coupling. Some consequences of the geometry were elaborated in the present paper
and discussed above.

We point out that the literature on evolutionary dynamics in general, and specifically on the
replicator equation, is vast. We merely point out few works on models involving the replicator
equation and spatial interaction in physics [29, 13], applied mathematics [24, 9], including
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extensions to scenarios with an infinite number of strategies (as opposed to selecting from a
finite set of labels) – see [3] and references therein.

In this context, our work might stimulate researchers working on spatially extended evo-
lutionary dynamics in various scientific disciplines. In particular, generalising our approach
to continuous-domain integro-differential models seems attractive that conform to the assig-
ment flow with non-local interactions (i.e. with larger neighbourhoods |Ni|, i ∈ I) and the
underlying geometry.

• Last but not least, our work may support a better understanding of learning with networks.
Our preliminary work on learning the weights (2.28) using the linearised assignment flow
[18] on a single graph (‘layer’) revealed the model expressiveness of this limited scenario,
on the one hand, and that subdividing complex learning tasks in this way avoids ‘black box
behaviour’, on the other hand. We hope that the continuous-domain perspective developed
in this paper in terms of sequences of linear PDEs will support our further understanding of
learning with hierarchical ‘deeper’ architectures.
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