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Abstract. This paper extends the assignment flow approach from cate-
gorial distributions to complex-valued Hermitian density matrices, used
as state spaces for representing and analyzing data associated with ver-
tices of an underlying graph. Determining the flow of the resulting dy-
namical system by geometric integration causes an interaction of these
non-commuting states across the graph, and the assignment of a pure
(rank-one) state to each vertex after convergence. Experiments with toy
systems indicate the potential of the novel approach for data represen-
tation and analysis.
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1 Introduction

The assignment flow approach provides data models in terms of state spaces
that interact geometrically across an underlying graph. In principle, any open
convex set can serve as a state space which becomes a Riemannian manifold when
endowed with a Riemannian metric. The canonical cases are parameter spaces
of distributions of the exponential family and the Fisher-Rao metric, which is
the subject of information geometry [2].

The assignment flow approach has been introduced by [3] for the basic family
of categorial distributions, in order to assign a unique element of a finite set of
labels set to each data point observed in a metric space. We refer to [17] for more
details and a review of related work.

Contribution. In this paper, we apply the assignment flow approach to
a novel class of state spaces, the class of complex valued, Hermitian positive
semidefinite matrices, known as density matrices in quantum mechanics, where
they represent a physical system [5]. Even though this extension appears to be
straightforward from an abstract mathematical viewpoint, details matter with
regards to both the components of the approach and the scope of applications.

Specifically, a key difference is the non-commutative interaction of density
matrices, opposed to the multiplicative interaction of discrete probability vectors.
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Furthermore, regarding the objects to be assigned to data, the finite set of labels
is replaced by the uncountable set of rank-one density matrices, i.e. the set of
orthogonal projectors onto one-dimensional subspaces. We show that the original
assignment flow can be recovered by restriction to the submanifold of diagonal
density matrices.

Approach
Component

Discrete Labeling
Assignment Flow

Quantum State
Assignment Flow

state space product manifold of categorial
distributions

product manifold of density
matrices

state evolution Ṡ = RS [ΩS] ρ̇ = Rρ
[
Ω[ρ]

]
assigned limit states unit vector at each vertex of G pure (rank one) state at each

vertex of G

Scope. Regarding applications, we have in mind data modeling and analysis
as well as applications in quantum mechanics. Regarding the former aspect,
we confine ourselves to a few proof of concept examples that demonstrate the
different character and indicate the enhanced flexibility for data modeling of the
novel assignment flow approach. Regarding the latter aspect, we point out that
the representation of image data for quantum computing is an active field of
research [7]. This paper contributes an approach for data modeling and analysis
based on concepts of information geometry and quantum mechanics.

Organization. Section 2 collects concepts of information geometry. The
novel approach is introduced in Section 3. Its properties are illustrated and
discussed in Section 4. We conclude and point out further work in Section 5.

Due to the page limit, we have to omit many details and almost all proofs,
and refer to [18].

2 Information Geometry

Information geometry [1,12] is concerned with the representation of paramet-
ric probability distributions like, e.g., the exponential familiy of distributions
[6], from a geometric viewpoint. Specifically, an open convex setM of parame-
ters of a probability distribution becomes a Riemannian manifold (M, g) when
equipped with a Riemannian metric g. The Fisher-Rao metric is the canonical
choice due to its invariance properties with respect to reparametrization [19].

A key ingredient of information geometry is the so-called α-family of affine
connections introduced by Amari, which comprises the so-called e-connection
∇ and m-connection ∇∗ as special cases. These connections are torsion-free
and dual to each other in the sense that they jointly satisfy the equation which
uniquely characterizes the Levi-Civita connection as metric connection [1, Def. 3.1,
Thm. 3.1]. Regarding numerical computations, working with the exponential
map induced by the e-connection is particularly convenient since its domain is
the entire tangent space. We refer to [2,8,4] for further reading and to [13], [2,
Ch. 7] for the specific case of the state spaces of quantum mechanics.

In this paper, we are concerned with two classes of convex sets, the relative
interior of probability simplices, each of which represents the categorial (discrete)
distributions of the corresponding dimension, and density matrices, i.e. the set
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of positive-definite Hermitian matrices with trace equal to one. Sections 2.1 and
2.2 introduce the information geometry for the former and the latter class of
sets, respectively.

2.1 Categorial Distributions

We set [c] := {1, 2, . . . , c} and 1c := (1, . . . , 1)> ∈ Rc for c ∈ N. The probability
simplex of distributions on [c] is denoted by∆c := {p ∈ Rc+ : 〈1c, p〉 =

∑
i∈[c] pi =

1}. Its relative interior equipped with the Fisher-Rao metric g becomes the
Riemannian manifold (Sc, g), where

Sc := rint∆c = {p ∈ ∆c : pi > 0, i ∈ [c]}, (2.1a)

gp(u, v) = 〈u,Diag(p)−1v〉, ∀u, v ∈ Tc,0, p ∈ Sc (2.1b)

with the tangent space (with the barycenter of Sc denoted by 1Sc =
1
c1c)

Tc,0 := T1Sc
Sc = {v ∈ Rc : 〈1c, v〉 = 0} (2.2)

and the trivial tangent bundle TSc ∼= Sc × Tc,0. The orthogonal projection onto
Tc,0 reads

π0 : Rc → Tc,0, π0v = (Ic − 1c1
>
Sc)v, (2.3)

A key role plays the replicator mapping

R : Sc × Tc,0 → Tc,0, Rpv := (Diag(p)− pp>)v, (2.4)

which is parametrized by p ∈ Sc and has the properties

Rp1c = 0 and π0Rp = Rpπ0 = Rp, ∀p ∈ Sc. (2.5)

In particular,Rp is the inverse metric tensor expressed in the ambient coordinates
p and its restriction to the tangent space Tc,0 is a linear isomorphism [16, Lemma
3.1]. Accordingly, given a smooth function f : Sc → R, its Riemannian gradient
with respect to the Fisher-Rao metric (2.1b) is given by

grad f(p) = Rp∂f(p). (2.6)

We list two further mappings required below. The exponential map induced by
the e-connection is defined on the entire space Tc,0 and reads [4]

Exp: Sc × Tc,0 → Sc, Expp(v) := 〈p, e
v
p 〉−1

(
p · e

v
p
)
, (2.7)

where · denotes componentwise multiplication of vectors (Hadamard product).
The so-called lifting map introduced in [3] reads

exp: Sc × Tc,0 → Sc, expp(v) := Expp ◦Rp(v) = 〈p, ev〉−1
(
p · ev

)
. (2.8)

The subscript of expp disambiguates its meaning in view of the ordinary expo-
nential function ev written without subscripts, and from the symbol expm which
always means the matrix exponential function.
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2.2 Density Matrices

We denote by ρ∗ = ρ> the conjugate transpose of a matrix ρ ∈ Cc×c. The
inner products on Cc and Cc×c, respectively, are denoted by 〈a, b〉 = a∗b and
〈A,B〉 = tr(A∗B). We denote the open convex cone of positive definite Hermitian
matrices by Pc := {ρ ∈ Cc×c : ρ = ρ∗, ρ � 0} and its intersection with the
hyperplane defined by constraint tr ρ = 1, the space of density matrices, by

Dc := {ρ ∈ Pc : tr ρ = 1}. (2.9)

We refer to [5] for the physical background and to [14] for mathematical aspects
related to quantum information theory. Denoting the vector space of Hermitian
matrices by Hc := {X ∈ Cc×c : X∗ = X}, we have analogous to (2.2) the tangent
space (with 1Dc := Diag(1Sc))

Hc,0 := T1Dc
Dc = Hc ∩ {X ∈ Cc×c : trX = 0} (2.10)

and the trivial tangent bundle TDc ∼= Dc ×Hc,0. The corresponding orthogonal
projection reads4

π0 : Hc → Hc,0, π0X := X − (trX)IDc . (2.11)

The metric g is the Bogoliubov-Kubo-Mori (BKM) metric [15]

gρ(X,Y ) :=

∫ ∞
0

tr
(
X(ρ+λI)−1Y (ρ+λI)−1

)
dλ, X, Y ∈ Hc,0, ρ ∈ Dc. (2.12)

This metric uniquely ensures that the e-connection ∇ induced on Dc is symmet-
ric and the connections ∇,∇∗ are mutually dual to each other in the sense of
information geometry [9], [2, Thm. 7.1].

The following map and its inverse, defined in terms of the matrix exponential
expm and its inverse logm = exp−1m will be convenient: T : Dc ×Hc → Hc, with

Tρ[X] :=
d

dt
logm(ρ+ tX)

∣∣
t=0

=

∫ ∞
0

(ρ+ λI)−1X(ρ+ λI)−1dλ, (2.13a)

T−1ρ [X] =
d

dt
expm(H + tX)

∣∣
t=0

=

∫ 1

0

ρ1−λXρλdλ, ρ = expm(H). (2.13b)

The inner product (2.12) may now be written in the form gρ(X,Y ) = 〈X,Tρ[Y ]〉
since the trace is invariant with respect to cyclic permutations of a matrix prod-
uct as argument. Likewise, the relation 〈ρ,X〉 = tr(ρX) = trT−1ρ [X] holds.

3 Quantum State Assignment Flows

This section summarizes our results regarding the extension of the assignment
flow on the manifold of categorial distributions to the manifold of density matri-
ces. The extension significantly generalizes the state space and the corresponding
4 We keep the symbol π0 for notational simplicity. The argument disambiguates the
projections (2.3) and (2.11), respectively.
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assignment flow. The positivity condition imposed on discrete probability vec-
tors is replaced by the positive definiteness condition imposed on Hermitian
matrices, and mass conservation of categorial distributions is replaced by trace
normalization. The assignment flow has to be generalized accordingly, which is
accomplished within the framework of information geometry. Rather than as-
signing a single label from a finite set of labels to each data point, the resulting
quantum-state assignment flow (QSAF) assigns a pure (rank-one) state from an
uncountable set to each data point. And analogous to the encoding of labels
by unit vectors on the boundary of the product of probability simplices (assign-
ment manifold), the QSAF converges towards the boundary of the corresponding
density matrix product manifold.

This section is organized as follows. A few basic relations are collected in
Section 3.1. Section 3.2 introduces the flow for a single state space which is
generalized in Section 3.3 to the case of multiple states whose evolutions in-
teract across a graph. This approach generalizes the assignment flow approach
introduced by [3]. Section 3.4 generalizes accordingly the reparametrization in-
troduced by [16] that enables to characterize the approach as a Riemannian
gradient flow with respect to a nonconvex potential. Finally, Section 3.5 elu-
cidates that the original assignment flow can be recovered as special case by
restricting the quantum state assignment flow to diagonal density matrices.

Due to the page limit, we omit the proofs, except for the short one of Prop. 6,
and refer to the journal version of this paper [18].

3.1 Basic Relations

A parametrization of the manifold Dc is given by

Γ : Hc,0 → Dc, Γ (X) :=
expm(X)

tr expm(X)
. (3.1)

Lemma 1. The mapping (3.1) is bijective with inverse

Γ−1 : Dc → Hc,0, Γ−1(ρ) = π0 logm ρ, (3.2)

Furthermore, for H,X ∈ Hc,0 with Γ (H) = ρ and Y ∈ THc,0 ∼= Hc,0, the
respective differential mappings are given by

dΓ (H)[Y ] = T−1ρ
[
Y − 〈ρ, Y 〉I

]
, ρ = Γ (H) (3.3a)

dΓ−1(ρ)[X] = π0 ◦ Tρ[X]. (3.3b)

A key concept of information geometry is the affine e-connection and the corre-
sponding exponential map. It rarely occurs that pairs of points on a Riemannian
manifold can be connected in closed form by a corresponding geodesic.
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Proposition 1. The e-geodesic emanating at ρ ∈ Dc in the direction X ∈ Hc,0
and the corresponding exponential map are given by

γ
(e)
ρ,X(t) := Exp(e)ρ (tX), t ≥ 0 (3.4a)

Exp(e)ρ (X) := Γ
(
Γ−1(ρ) + dΓ−1(ρ)[X]

)
(3.4b)

= Γ
(
Γ−1(ρ) + π0 ◦ Tρ[X]

)
. (3.4c)

We next consider the evaluation of Riemannian gradients.

Proposition 2. The Riemannian gradient of a smooth function f : Dc → R
with respect to the BKM-metric (2.12) is given by

gradρ f = T−1ρ [∂f ]− 〈ρ, ∂f〉ρ, (3.5)

where T−1ρ is given by (2.13b) and ∂f is the ordinary gradient with respect to
the Euclidean structure of the ambient space Rc×c.

The general defining formula gρ(grad f,X) = dfρX, ∀X ∈ Hc,0 for the
Riemannian gradient [11, pp. 337] generally yields an expression of the form
grad fρ = G(ρ)−1∂f(ρ) given in local coordinates. The role of the inverse metric
tensor G−1 is played by the replicator map (2.4) which, in the present context
and in view of the result (3.5), takes the more general form

Rρ : Hc → Hc,0, Rρ[X] := T−1ρ [X]− 〈ρ,X〉ρ (replicator map) (3.6)

where ρ ∈ Dc and X ∈ Hc,0.
For a given graph G = (V, E), we finally introduce the product spaces

H := Hc × · · · × Hc, H0 := Hc,0 × · · · × Hc,0, (3.7)

each with |V| factors.

3.2 Single-Vertex Quantum State Assignment Flow

Let D ∈ Hc denote a given Hermitian matrix. Then we define the corresponding
likelihood matrix by

Lρ : Hc → Dc, Lρ(D) := expρ(−π0D), ρ ∈ Dc. (3.8)

The single-vertex quantum state assignment flow equation reads

ρ̇ = Rρ[Lρ(D)], ρ(0) = 1Dc , (3.9)

where Rρ is given by (3.6). The evolution of ρ(t) solving (3.9) behaves as follows.

Proposition 3. Let D = QΛDQ
> be the spectral decomposition of D with eigen-

values λ1 ≥ · · · ≥ λc and orthonormal eigenvectors Q = (q1, . . . , qc). Assume the
minimal eigenvalue λc is unique. Then the solution ρ(t) to (3.9) satisfies

lim
t→∞

ρ(t) = Πqc := qcq
>
c . (3.10)
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We refer to [18] for a proof. It relies on a decomposition ofHc,0 [2, Section 7.1]
that allows for a reduction of the single-vertex quantum state assignment flow
to the standard assignment flow [3]. The convergence of the latter is discussed
in detail in [21].

A natural question is how multiple states which evolve in this way, can in-
teract so as to influence their limit points, but not their property of being pure
(rank one) states. Such a dynamical system is provided next.

3.3 Quantum State Assignment Flow

Let G = (V, E , ω) be a given graph with nonnegative weight function ω : E → R+,
satifying

∑
k∈Ni ωik = 1 with respect to the neighborhood system Ni := {i} ∪

{k ∈ V : k ∼ i}, i ∈ V, induced by the adjacency relation E . The motivation as
well as one possible choice will be further clarified in the experimental section.
Based on (2.9), we define the product manifold (Qc, g) where

ρ = (. . . , ρi, . . . ) ∈ Qc := Dc × · · · × Dc︸ ︷︷ ︸
|V| factors

(3.11)

and the Riemannian metric in view of (2.12) and (3.7) is given by

gρ(X,Y ) :=
∑
i∈V

gρi(Xi, Yi), X, Y ∈ TρQc := H0, ∀ρ. (3.12)

Let 1Qc denote the barycenter of Qc given by (1Qc)i = 1Dc for all i ∈ V. Then
the geometric interaction of likelihood matrices of the form (3.8) is defined by
the similarity mapping

S : V×Qc → Dc, Si(ρ) := Exp(e)ρi

( ∑
k∈Ni

ωik
(
Exp(e)ρi

)−1(
Lρk(Dk)

))
. (3.13)

A characterization of the similarity map and a formula for evaluating it conve-
niently follow. They illustrate the benefit of using information geometry and the
e-connection, rather than the Riemannian connection, from the computational
viewpoint.

Proposition 4. An equivalent expression of the similarity mapping (3.13) is
given by

Si(ρ) = Γ
( ∑
k∈Ni

ωik(logm ρk −Dk)
)
, i ∈ V. (3.14)

Furthermore, if ρ ∈ Dc solves the equation 0 =
∑
k∈Ni ωik

(
Exp

(e)
ρ

)−1(
Lρk(Dk)

)
,

which corresponds to the optimality condition for Riemannian centers of mass
[10, Lemma 6.9.4], except for using a different exponential map, then

ρ = Si(ρ), (3.15)

with Si(ρ) given by (3.13) and (3.14), respectively.
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We are now in the position to define the

ρ̇ = Rρ[S(ρ)], ρ(0) = 1Qc (quantum state assignment flow) (3.16a)

where both the replicator map Rρ and the similarity map S(ρ) apply factorwise,

S(ρ)i = Si(ρ), Rρ[S(ρ)]i = Rρi [Si(ρ)], i ∈ V. (3.16b)

3.4 Riemannian Gradient Flow Parametrization

The proposition below provides a reparametrization of the quantum state flow
equation (3.16a) that constitutes a Riemannian gradient flow with respect to a
nonconvex potential.

Based on the weight function ω : E → R+ of a given graph G = (V, E , w), we
define the linear mapping

Ω : Qc → Qc, Ω[ρ]i :=
∑
k∈Ni

ωikρk ∈ Dc, i ∈ V. (3.17)

In addition, we adopt the symmetry assumption

ωij = ωji, j ∈ Ni ⇔ i ∈ Nj , ∀i, j ∈ V (3.18)

which makes the mapping (3.17) self-adjoint: 〈µ,Ω[ρ]〉 :=
∑
i∈V〈µi, Ω[ρ]i〉 =

〈Ω[µ], ρ〉 for all µ, ρ ∈ Qc. Then the following holds.

Proposition 5. The flow equation (3.16a) is equivalent to the system

ρ̇ = Rρ[µ], ρ(0) = 1Qc , (3.19a)

µ̇ = Rµ
[
Ω[µ]

]
, µ(0) = S(1Qc). (3.19b)

Furthermore, (3.19b) is the Riemannian gradient flow

µ̇ = − gradµ J(µ) (3.20a)

with respect to the potential J(µ) given by

J(µ) := −1

2
〈µ,Ω[µ]〉 = 1

2

(
〈µ,LG [µ]〉 − ‖µ‖2

)
, (3.20b)

and with the ‘Laplacian’ operator LG : Qc → Qc, LG := id−Ω.

The crucial point of Proposition (5) is that the evolution of µ(t) described by
(3.19b) represents the ‘essential’ part of the quantum state flow equation (3.16a),
since ρ(t) solving (3.19a) is a function of µ(t) but not vice versa. Hence the
geometric potential flow (3.20) provides a suitable basis for analyzing ‘deep’
quantum state assignment flows that result from the geometric integration of
µ(t) (where each time step defines a ‘layer’) and a task-dependent choice of a
time-variant mapping Ω(t), typically to be learnt from data.
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3.5 Recovering the Assignment Flow for Categorial Distributions

In this section, we show that the quantum state assignment flow on a product
manifold of density matrices contains as special case the assignment flow for
categorial distributions, when the former flow is restricted to diagonal density
matrices. This is quite natural because ρ � 0 implies positive diagonal elements
and tr ρ = 1 implies diag(ρ) ∈ Sc.

We confine ourselves to the formulation of quantum state assignment flow
provided by Proposition 5 whose flow corresponds one-to-one to the flow gener-
ated by Equation (3.16a).

Proposition 6. Let

Qdc := Ddc × · · · × Ddc ⊂ Qc, Ddc := {Diag(p) : p ∈ Sc} (3.21)

denote the product submanifold of diagonal density matrices of the manifold Qc
given by (3.11). Then the quantum state flow equation in the form (3.19b) re-
duces to the dynamical system5

Ṡ = RS [ΩS], S(0) = S(1Wc
) (3.22)

called ‘S-flow’ in [16, Prop. 3.6], where

S ∈ R|V|×c+ , Si = diag(µi), i ∈ V (3.23a)

Ω ∈ Rn×n+ , Ωij = ω(ij), ij ∈ E (3.23b)

RS [ΩS]i = RSi(ΩS)i, (3.23c)

with RSi given by (2.4), with 1Wc
denoting the barycenter of the assignment

manifold and with the inital point S(0) defined as in [16, Prop. 3.6].

Proof. The proof basically reduces to identifying (i) the restriction of product
states of the form (3.11) to diagonal density matrices as factors and (ii) matrices
S ∈ R|V |×c with row vectors

Si = diag(µi), i ∈ V. (3.24)

Then the mapping (3.17) takes the formΩS withΩ given by (3.23b), whereas the
right-hand side in (3.19b) takes for diagonal – and hence commuting – density
matrices µi, i ∈ V, the form

Rµ[Ωµ]i
(3.16b)
= Rµi

[
Ω[µ]i

]
= Rµi

[ ∑
k∈Ni

ωikρk

]
(3.25a)

(3.6)
(2.13b)
=

∑
k∈Ni

ωik

(∫ 1

0

µ1−λ
i µkµ

λ
i dλ− tr(µiµk)µi

)
(3.25b)

5 The use of the symbol S in the present context should not be confused with the
similarity mapping (3.13). We just adhere to the notation used in prior work in
order to reference clearly.
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(3.24)
=

∑
k∈Ni

ωik
(
Si · Sk − 〈Si, Sk〉Si

)
= RSi

( ∑
k∈Ni

ωikSk

)
(3.25c)

= RSi(ΩS)i
(3.23c)
= RS [ΩS]i. ut (3.25d)

Proposition 6 basically says that the quantum assignment flow introduced in this
paper is the natural generalization of the assignment flow approach introduced
by [3,17] to non-commutative state spaces.

4 Experiments and Discussion

This section presents few academical results which illustrate properties of the
novel QSAF approach (3.16). We do not intend to consider and discuss any
serious and fully worked out application in this paper (see Section 5). Rather,
the focus is on properties of the novel approach that cannot be achieved with
the original assignment flow of categorial distributions. All computations were
done using a geometric numerical Euler scheme adapted to the QSAF, after
generalizing the approach presented in [20] accordingly.

Basic patch smoothing. Figure 4.1 shows an application of the QSAF
to a random spatial arrangement (grid graph) of patches, where each vertex
represents a patch, not a pixel. We refer to the caption for a description. The
result demontrates

– that geometric smoothing of image data at the patch level can preserve
spatial image structure;

– that after convergence the final state constitutes a piecewise constant label-
ing with pure (rank-one) states.

Thus the QSAF, directly applied to the raw data, performs image partitioning
which is not piecewise constant at the pixel level.

Noise separation at the patch level. Figure 4.2 shows an application of
the QSAF to a spatial collection of patches, each of which is pixelwise the mean
of a randomly oriented patch and a patch with a fixed orientation. The result
demonstrates that the QSAF effectively separates and removes ‘random patch
noise’ at the patch level without any prior information or accessing the pixel
level.

Patch smoothing using harmonic frames. Any matrix ensemble of the
form {Mj}j∈[c] ⊂ Pc :

∑
j∈[c]Mj = Ic induces the categorial probability distri-

bution p ∈ ∆c on [c] by taking inner products: pj = 〈Mj , ρ〉 = tr(Mjρ), j ∈ [c],
for any ρ ∈ Dc. A simple instance are the projection operators Mj = F j2 (F

j
2 )
∗

formed by the columns F j2 of the unitary discrete Fourier matrix F2 = F ⊗ F ∈
Cc×c which performs the 2D discrete Fourier transform when applied to a vec-
torized patch with c pixels. Subtracting the mean of a vectorized patch fol-
lowed by normalization using the ‖ · ‖2 norm, the patch at vertex i ∈ V was
encoded by a matrix Di in (3.8) of the form Di = F2 Diag(−|p̂i|2)F ∗2 with
|p̂i|j = |(F2 vec(Pi))j |, ∀j, for patch Pi.
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Fig. 4.1: Left pair: A random collection of patches with oriented image struc-
ture. The colored image displays for each patch its orientation using the color
code depicted by the rightmost panel. Each patch is represented by a rank-one
matrix D in (3.8), obtained by vectorizing the patch and taking the tensor prod-
uct.Center pair: The final state of the QSAF obtained by geometric integration
with uniform weighting ωik = 1

|Ni| , ∀k ∈ Ni, ∀i ∈ V, of the nearest neighbors
states. It represents an image partition but preserves image structure, due to
geometric smoothing of patches encoded by non-commutative state spaces.

(a) (b) (c) (d)

Fig. 4.2: (a) A random collection of patches with oriented image structure. (b)
A collection of patches with the same oriented image structure. (c) Pixelwise
mean of the patches (a) (b) at each location. (d) The QSAF recovers a close
approximation of (b) (color code: see Fig. 4.1) by iteratively smoothing the states
ρk, k ∈ Ni corresponding to (c) through geometric integration.

Fig. 4.3: Left: A real roof tex-
ture. Right: 8 × 8 patches
were encoded using the discrete
Fourier frame (see text). Inte-
grating the QSAF yields the
same effect as shown by Fig-
ure 4.2, here with respect to the
Fourier frame, however.
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Integrating the QSAF yields a denoising effect at the patch level similar
to Figure 4.2, here in the Fourier domain, however. After convergence, each
state has the form ρi = qiq

>
i for some unit vector qi which was used to filter

the Fourier-transformed patch vector using the Hadamard product, followed by
decoding the patch. Accordingly, “assignment” here means scale and orientation
in a spatial context, as encoded by the harmonic Fourier frame; see Figure 4.3.

Translation-invariant patch smoothing in a harmonic frame on a
non-grid graph. The scenario of Figure 4.3 was extended: rather than using
nearest-neighborhoods, the 8 most similar patches in the entire collection of im-
age patches were selected for each patch, to define corresponding non-grid edges
and irregular neighborhoods. Similarity was defined in terms of the distance be-
tween the orbits of patches, generated by 2D cyclic translation. The resulting
unitary ‘registration operator’ was attached to each edge. Such elementary pre-
processing changes the data encoding in terms of the matrix D in (3.8), but not
the QSAF flow, which yields a very sparse but sufficiently detailed representation
of image structure, although the Fourier frame only represents two orientations
at various scales; see Figure 4.4.

(a) (b) (c)

Fig. 4.4: (a) A real scene. (b) A section of (a). (c) QSAF-filtered patches using a
single harmonic frame, irregular non-local neighborhoods and translation invari-
ant patch encoding (see text). Due to partitioning the image into patches, using
a single harmonic frame and a shift-invariant patch distance, image structure is
encoded very sparsely but sufficiently detailed.

5 Conclusion

We introduced a novel dynamical system for data representation and analysis,
by extending the assignment flow approach to density matrices. Few numerical
examples illustrated context-sensitive patch smoothing by geometric averaging
of the non-commuting state spaces.

The model expressivity of the approach which performs the assignment of
rank-one density matrices as ‘labels’, is larger than our preliminary experiments
indicate. For instance, latent states may be used to parametrize Parseval frames
which in turn transform the primary states. Moreover, by learning the parame-
ters Ω in (3.13) and (3.17), respectively, from data, our approach may be seen
as a novel ‘neural ODE’ from the viewpoint of machine learning.
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