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ABSTRACT. This paper introduces a novel nonlocal partial difference equation (G-PDE) for labeling metric
data on graphs. The G-PDE is derived as nonlocal reparametrization of the assignment flow approach that was
introduced in J. Math. Imaging & Vision 58(2), 2017. Due to this parameterization, solving the G-PDE nu-
merically is shown to be equivalent to computing the Riemannian gradient flow with respect to a nonconvex
potential. We devise an entropy-regularized difference-of-convex-functions (DC) decomposition of this poten-
tial and show that the basic geometric Euler scheme for integrating the assignment flow is equivalent to solving
the G-PDE by an established DC programming scheme. Moreover, the viewpoint of geometric integration re-
veals a basic way to exploit higher-order information of the vector field that drives the assignment flow, in order
to devise a novel accelerated DC programming scheme. A detailed convergence analysis of both numerical
schemes is provided and illustrated by numerical experiments.
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1. INTRODUCTION

1.1. Overview, Motivation. Nonlocal iterative operations for data processing on graphs constitute a basic
operation that underlies many major image and data processing frameworks, including variational methods
and PDEs on graphs for denoising, morphological processing and other regularization-based methods of
data analysis [GO07, ELB08, GO09, BCM10, ETT15]. This includes deep networks [GBC16] and time-
discretized neural ODEs [CRBD18] whose layers generate sequences of nonlocal data transformations.

Among the extensions of such approaches to data labeling on graphs, that is the assignment of an ele-
ment of a finite set of labels to data points observed at each vertex, one may distinguish approaches whose
mathematical structure is directly dictated by the labeling task, and approaches that combine traditional data
processing with as subsequent final discretization step:

• Examples of the former class are discrete graphical models [WJ08, KAH+15] that encode directly
the combinatorial label assignment task, as a basis for the design of various sequential nonlocal
processing steps performing approximate inference, like belief propagation. However, the intrinsic
non-smoothness of discrete graphical models constitutes a major obstacle for the design of hierar-
chical models and for efficient parameter learning. Graphical models, therefore, have been largely
superseded by deep networks during the last decade.
• Examples of the latter class include the combination of established PDE-based diffusion approaches

and threshold operations [MBO94, vGGOB14, BF16]. The mathematical formulations inherit the
connection between total variation (TV) based variational denoising, mean curvature motion and
level set evolution [OS88, ROF92, Gar13, CCN15], and they exhibit also connections to gradient
flows in terms of the Allen-Cahn equation with respect to the Ginzburg-Landau functional [Gar13,
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vGGOB14]. Regarding data labeling, however, a conceptual shortcoming of these approaches is that
they do not provide a direct and natural mathematical problem formulation. As a consequence, this
renders difficult to cope with the assignment of dozens or hundreds of labels to data, and to learn
efficiently parameters in order to tailor regularization properties to the problem and the class of data
at hand.

Assignment flows [ÅPSS17, Sch20] constitute a mathematical approach tailored to the data labeling problem,
aimed to overcome the aforementioned shortcomings. The basic idea is to represent label assignments to data
by a smooth dynamical process, based on the Fisher-Rao geometry of discrete probability distributions and
on a weighted (parametrized) coupling of local flows for label selection across the graph. As a result, no
extrinsic thresholding or rounding is required since the underlying geometry enables to perform both spatial
diffusion for assignment regularization and rounding to an integral solution just by integrating the assignment
flow.

Stability and convergence to integral solutions of assignment flows hold under mild conditions [ZZS21].
A wide range of numerical schemes exist [ZSPS20] for integrating geometrically assignment flows with
GPU-conforming operations. Generalized assignment flows for unsupervised and self-supervised scenarios
[ZZPS20a, ZZPS20b] are more involved computationally but do not essentially change the overall mathe-
matical structure.

Assignment flows regularize the assignment of labels to data by parameters Ω that couple the local flows
at edges across the graph. These parameters can be determined either directly in a data-driven way as
demonstrated in Figure 2.3 or learned offline in a supervised way. Learning the parameters of assignment
flows from data can be accomplished using symplectic numerical integration [HSPS21] or, alternatively and
quite efficiently, using exponential integration of linearized assignment flows [ZPS21, ZPS22]. In particular,
deep parametrizations of assignment flows do not at all change the mathematical structure which enables
to exploit recent progress on PAC-Bayes bounds in order to compute a statistical performance certificate of
classifications performed by deep linearized assignment flows in applications [BZPS22]. The assignment
flow approach is introduced in Section 2.2 and illustrated by Figure 2.2.

1.2. Contribution, Organization. This paper makes two contributions, illustrated by Figure 1.1:

(a) Given an undirected weighted regular grid graph G = (V, E ,Ω), we show that solving a particular
parametrization of the assignment flow is equivalent to solving the nonlocal nonlinear partial difference
equation (G-PDE) on the underlying graph G,

∂tS(x, t) = RS(x,t)

(1

2
Dα
(
ΘGα(S)

)
+ λS

)
(x, t), on V × R+, (1.1a)

S(x, t) = 0, on VαI × R+, (1.1b)

S(x, 0) = S(x)(0), on V × R+, (1.1c)

where the vector field S takes values at x ∈ V in the relative interior of the probability simplex that is
equipped with the Fisher-Rao metric. Dα and Gα are nonlocal divergence and gradient operators based
on established calculus [DGLZ12, DGLZ13]. The linear mapping RS(x),t is the inverse metric tensor
corresponding to the Fisher-Rao metric, expressed in ambient coordinates.

The G-PDE (1.1) confirms and provides a generalized nonlocal formulation of a PDE that was heuris-
tically derived by [SS21, Section 4.4] in the continuous-domain setting. In particular, (1.1) addresses
the data labeling problem directly without any further pre- or postprocessing step and thus contributes
to the line of PDE-based research of image analysis initiated by Alvarez et al. [AGLM93] and Weickert
[Wei98].
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minS∈W J(S) ∂tS = RS

(
1
2D

α
(
ΘGα(S)

)
+ λS

)
Ṡ = RS(ΩS)

minS∈W J(S), J(S) = g(S)− h(S)

geometric integration

DC-Programming

acceleration

nonlocal boundary conditio
n

Section 3

Section 5

Riemannian descent

Section 2.2

nonlocal G-PDE

FIGURE 1.1. Summary of results. Starting point (Section 2.2) is a particular formulation of the assignment
flow ODE (top) that represents the Riemannian gradient descent of a functional J (left). The first main con-
tribution of this paper is an equivalent alternative representation of the assignment flow equation in terms of
a partial difference equation on the underlying graph (right), with a nonlocal data-driven diffusion term in di-
vergence form and further terms induced by the information-geometric approach to the labeling problem. The
second major contribution concerns a DC-decomposition of the nonconvex functional J (bottom) and a novel
accelerated minimization algorithm using a second-order tangent space parametrization of the assignment flow.

(b) The particular parametrization of the assignment flow that we show in this paper to be equivalent to (1.1),
constitutes a Riemannian gradient flow with respect to a non-convex potential [SS21, Section 3.2]. We
consider a Difference-of-Convex (DC) function decomposition [HT99] of this potential and show

(i) that the simplest first-order geometric numerical scheme for integrating the assignment flow can be
interpreted as basic two-step iterative method of DC-programming [HAPD05];

(ii) that a corresponding tangent-space parametrization of the assignment flow and second-order deriva-
tives of the tangent vector field can be employed to accelerate the basic DC iterative scheme.

Due to result (a), both schemes (i) and (ii) also solve the G-PDE (1.1). In addition, we point out that
while a rich literature exists about accelerated convex optimization, see e.g. [BT12, KBB16, FRMP18]
and references therein, methods for accelerating nonconvex iterative optimization schemes have been
less explored.

Organization. Our paper is organized as follows. Section 2 introduces non-local calculus and the assign-
ment flow, respectively. The equivalence of the assignment flow and the G-PDE (1.1) is derived in Section
3, together with a tangent space parametrization as basis for the development of iterative numerical solvers,
and with a balance law that reveals how spatial diffusion interacts with label assignment by solving (1.1).
Section 4 is devoted to explicitly working out common aspects and differences of (1.1) to related work:

– continuous-domain nonlocal diffusion [AVMRTM10],
– nonlocal variational approaches to image analysis [GO09] and
– nonlocal G-PDEs on graphs [ELB08, ETT15].

As summarized by Figure 4.1 and Table 1, these approaches can be regarded as special cases from the
mathematical viewpoint. They differ however regarding the scope and the class of problems to be solved: the
approach (1.1) is only devoted to the data labeling problem which explains its mathematical form. Finally,
we show how our work extends the result of [SS21]. Section 5 details contribution (b) on DC-programming
from the viewpoint of geometric integration. The corresponding convergence analysis is provided in Section
6. Numerical results that illustrate our findings are reported in Section 7. We conclude in Section 8.
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2. PRELIMINARIES

This section contains basic material required in the remainder of this paper. A list of symbols and their
meaning follows.

Symbol Description

G = (V, E ,Ω) A graph with vertex set V , edge set E and weights Ω.
V Set of vertices representing the discrete domain V ⊂ Zd.
n Total number n = |V| of nodes in the graph G
d Dimension of the discrete domain associated with V .
Ω Weighted symmetric adjacency matrix of the graph G.
N (x) neighborhood of x ∈ V induced by Ω.
E Subset of an Euclidean space.
FV ,FV,E Space of one-point functions defined on V , taking values in R resp. E.
FV×V ,FV×V,E Space of two-point functions defined on V × V , taking values in R resp. E.
α ∈ FV×V Antisymmetric mapping that defines the interaction of nodes x, y ∈ Zd.
Θ ∈ FV×V Nonnegative scalar-valued symmetric mapping that parametrizes the introduced nonlocal diffusion process.
VαI Nonlocal interaction domain which represents the connectivity of nodes x ∈ V to nodes y ∈ Zd \ V .
V Extension of the discrete domain associated with V by the nodes in VαI .
Dα,Gα Nonlocal divergence and gradient operators parametrized by the mapping α.
Nα Nonlocal interaction operator parametrized by the mapping α.
Lω Nonlocal Laplacian with weight function ω.
Xn Data on the graph G taking values in a metric space X .
X(x) Data point X ∈ Xn given at x ∈ V .
X ∗ set of labels {X∗j : j ∈ J } ⊂ X .
c Number of labels c = |J |, one of which is uniquely assigned to each data point.
∆c Probability simplex in Rc of dimension c− 1.
S Relative interior of the probability simplex ∆c, forming the factors of the product manifoldW .
T0 Tangent space corresponding to S.
W , T0 Assignment manifold and the corresponding tangent space at the barycenter 1W .
S,W ∈ W Points on the assignment manifold taking values S(x),W (x) ∈ S at x ∈ V .
S∗,W ∗ ∈ W \W Integral vectors on the boundary ofW .
V ∈ T0 Points in the tangent space taking values V (x) ∈ T0 at x ∈ V .
Π0 Orthogonal projection onto the tangent space T0.
RS Replicator map at S ∈ W .

2.1. Nonlocal Calculus. Following [DGLZ12], we collect some basic notions of nonlocal calculus which
will be used throughout this paper. See [Du19] for a detailed exposition.

Let (V, E ,Ω) be an undirected weighted regular grid graph with

n = |V|, V ⊂ Zd, 2 ≤ d ∈ N (2.1)

nodes, with edge set E ⊂ V × V that has no self-loops, and with the weighted adjacency matrix Ω that
satisfies

0 ≤ Ω(x, y) ≤ 1, Ω(x, y) = Ω(y, x), ∀x, y ∈ V. (2.2)

Ω defines the neighborhoods

N (x) := {y ∈ V : Ω(x, y) > 0}, x ∈ V (2.3)

and serves as a function Ω: V × V → R measuring the similarity of adjacent nodes.
We define the function spaces

FV := {f : V → R}, FV×V := {F : V × V → R}, (2.4a)

FV,E := {F : V → E}, FV×V,E := {F : V × V → E}, (2.4b)
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where E denotes a (possibly improper) subset of an Euclidean space. The spaces FV and FV×V respectively
are equipped with the inner products

〈f, g〉V :=
∑
x∈V

f(x)g(x), 〈F,G〉V×V :=
∑

(x,y)∈V×V

F (x, y)G(x, y). (2.5)

We set
V := V∪̇VαI (disjoint union), (2.6)

where the nonlocal interaction domain VαI with respect to an antisymmetric mapping

α ∈ FV×V , α(x, y) = −α(y, x), ∀x, y ∈ V (2.7)

is defined as

VαI := {x ∈ Zd \ V : α(x, y) 6= 0 for some y ∈ V}. (2.8)

VαI serves discrete formulations of conditions on nonlocal boundaries with positive measure in a Euclidean
domain. Such conditions are distinct from traditional conditions imposed on boundaries that have measure
zero. Figure 2.1 displays a possible nonlocal boundary configuration.

We state the following identity induced by (2.7)∑
x,y∈V

(
F (x, y)α(x, y)− F (y, x)α(y, x)

)
= 0, ∀F ∈ FV×V . (2.9)

The nonlocal divergence operator Dα and the nonlocal interaction operator Nα are defined by

Dα : FV×V → FV , Dα(F )(x) :=
∑
y∈V

(
F (x, y)α(x, y)− F (y, x)α(y, x)

)
, x ∈ V, (2.10a)

Nα : FV×V → FVαI , Nα(F )(x) := −
∑
y∈V

(
F (x, y)α(x, y)− F (y, x)α(y, x)

)
, x ∈ VαI . (2.10b)

Based on the mapping α given by (2.7), the operator (2.10b) is nonzero in general and accounts for the
density of a nonlocal flux from the entire domain V to nodes x ∈ VαI [Du19]. This generalizes the notion
local flux density 〈q(x), n(x)〉 on continuous domains Ω ⊂ Rd with outer normal vector field n(x) ∈ Rd

on the boundary ∂Ω, and with a vector-valued function q(x) on ∂Ω that typically stems from an underlying
constitutive physical relation. Due to the identity (2.9), the operators (2.10) satisfy the nonlocal Gauss
theorem ∑

x∈V
Dα(F )(x) =

∑
y∈VαI

Nα(F )(y). (2.11)

The operator Dα maps two-point functions F (x, y) to Dα(F ) ∈ FV , whereas Nα(F ) is defined on the
domain VαI given by (2.8) where nonlocal boundary conditions are imposed.

The adjoint mapping (Dα)∗ with respect to the inner product (2.5) is determined by the relation

〈f,Dα(F )〉V = 〈(Dα)∗(f), F 〉V×V , ∀f ∈ FV , ∀F ∈ FV×V , (2.12)

which yields the operator

(Dα)∗ : FV → FV×V , (Dα)∗(f)(x, y) := −(f(y)− f(x))α(x, y), ∀f ∈ FV . (2.13)

The nonlocal gradient operator is defined as

Gα : FV → FV×V , Gα(f)(x, y) := −(Dα)∗(f)(x, y), ∀f ∈ FV . (2.14)

For vector-valued mappings, the operators (2.10) and (2.13) naturally extend to FV×V,E and FV,E , respec-
tively, by acting componentwise.
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Ω

∂Ω

∈ V
∈ ∂Ω

∈ Z2 \ V

Ω

∂Ω

∈ V
∈ VαI
∈ Z2 \ V

y

x

FIGURE 2.1. Schematic visualization of a nonlocal boundary. Left: A bounded open domain Ω ⊂ R2 with
local boundary ∂Ω overlaid by the grid Z2. Right: A bounded open domain Ω with nonlocal boundary (light
gray color). Nodes and , respectively, are vertices on the graph V and on the interaction domain VαI given
by (2.8).

Using the mappings (2.13), (2.14), the nonlocal Gauss theorem (2.11) implies Greens nonlocal first iden-
tity ∑

x∈V
u(x)Dα(F )(x)−

∑
x∈V

∑
y∈V

Gα(u)(x, y)F (x, y) =
∑
x∈VαI

u(x)Nα(F )(x),
u ∈ FV ,
F ∈ FV×V .

(2.15)

Given a function f ∈ FV and a symmetric mapping

Θ ∈ FV×V with Θ(x, y) = Θ(y, x), (2.16)

we define the linear nonlocal diffusion operator

Dα
(
ΘGα(f)

)
(x) = 2

∑
y∈V

Gα(f)(x, y)Θ(x, y)α(x, y), f ∈ FV . (2.17)

For the particular case with no interactions, i.e. α(x, y) = 0 if x ∈ V and y ∈ VαI , expression (2.17) reduces
with Θ(x, y) = 1, x, y ∈ V to

Lωf(x)
(2.3)
=

∑
y∈N (x)

ω(x, y)
(
f(y)− f(x)

)
, ω(x, y) = 2α(x, y)2, (2.18)

which coincides with the combinatorial Laplacian [CL96, Chu97] after reversing the sign.
The next remark provides an intuition for appropriate setup of parameters α,Θ ∈ FV×V .

Remark 2.1. (Role of parameters in modeling nonlocal diffusion processes.) In our work we differentiate
the parameters α,Θ by their role played in modeling nonlocal diffusion processes of the form (2.17). More
precisely, we use the antisymmetric mapping α ∈ FV×V for definition of first order derivative operators
Dα,Gα,Nα and the symmetric mapping Θ ∈ FV×V for specifying the constitutive function at each x ∈ V
that controls the smoothing properties of operator (2.18). Instances of α,Θ along with an analytical ablation
study will be presented in section 4.

2.2. The Assignment Flow Approach. We summarize the assignment flow approach introduced by [ÅPSS17]
and refer to [Sch20] for more background and a review of related work.
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2.2.1. Assignment Manifold. Let (X , dX ) be a metric space and

Xn = {X(x) ∈ X : x ∈ V} (2.19)

be given data on a graph (V, E ,Ω) as specified in Section 2.1. We encode assignments of data X(x), x ∈ V ,
to a set

X ∗ = {X∗j ∈ X , j ∈ J }, c := |J | (2.20)
of predefined prototypes by assignment vectors

W (x) = (W1(x), . . . ,Wc(x))> ∈ S, (2.21)

where S = rint ∆c denotes the relative interior of the probability simplex ∆c ⊂ Rc+ that we turn into a
Riemannian manifold (S, g) with the Fisher-Rao metric g from information geometry [AN00, AJLS17] at
each p ∈ S

gp(u, v) =
∑
j∈J

ujvj
pj

= 〈u, v〉p, u, v ∈ T0, (2.22)

with tangent space T0 given by (2.24). The assignment manifold (W, g) is defined as the product space
W = S × · · · × S of n = |V| such manifolds. Points on the assignment manifold row-stochastic matrices
with full support are denoted by

W = (. . . ,W (x), . . . )> ∈ W ⊂ Rn×c++ , x ∈ V. (2.23)

The assignment manifold has the trivial tangent bundle TW with TWW = T0, ∀W ∈ W and tangent space

T0 = T0 × · · · × T0, T0 = {v ∈ Rc : 〈1c, v〉 = 0}. (2.24)

The metric (2.22) naturally extends to

gW (U, V ) =
∑
x∈V

gW (x)

(
V (x), U(x)

)
, U, V ∈ T0. (2.25)

The orthogonal projection onto T0 is given by

Π0 : Rc → T0, Π0(u) = u− 〈1S , u〉1c, 1S :=
1

c
1c. (2.26)

The orthogonal projection onto T0, also denoted by Π0 for simplicity, is

Π0 : Rn×c → T0, Π0D =
(
. . . ,Π0D(x), . . .

)>
. (2.27)

2.2.2. Assignment Flows. Based on the given data and prototypes, we define the distance vector field on V
by

DX (x) =
(
dX (X(x), X∗1 ), . . . , dX (X(x), X∗c )

)>
, x ∈ V. (2.28)

This data representation is lifted toW to obtain the likelihood vectors

L(x) : S → S, L(W )(x) =
W (x)� e−

1
ρ
DX (x)

〈W (x), e
− 1
ρ
DX (x)〉

, x ∈ V, ρ > 0, (2.29)

where the exponential function applies componentwise and � denotes the componentwise multiplication

(p� q)j = pjqj , j ∈ [c], p, q ∈ S (2.30)

of vectors p, q. Accordingly, we denote componentwise division of vectors by
v

p
=
(v1

p1
, . . . ,

vc
pc

)>
, p ∈ S (2.31)

for strictly positive vectors p.
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The map (2.29) is based on the affine e-connection of information geometry [AN00, AJLS17]. The scaling
parameter ρ > 0 normalizes the a priori unknown scale of the components of DX (x). Likelihood vectors are
spatially regularized by the similarity map and the similarity vectors, respectively, given for each x ∈ V by

S(x) : W → S, S(W )(x) = ExpW (x)

( ∑
y∈N (x)

Ω(x, y) Exp−1
W (x)

(
L(W )(y)

))
, (2.32)

where

Exp: S × T0 → S, Expp(v) =
p� e

v
p

〈p, e
v
p 〉
,

v

p
=
(v1

p1
, . . . ,

vc
pc

)>
(2.33)

is the exponential map corresponding to the e-connection. If the exponential map of the Riemannian (Levi
Civita) connection were used instead, then the term in the round bracket of (2.32) would be the optimality
condition for the weighted Riemannian mean of the vectors {L(W )(y) : y ∈ N (x)} [Jos17, Lemma 6.9.4].
Using the exponential map of the e-connection enables to evalute the right-hand side of (2.32) in closed form
and to define the similarity vectors as geometric means of the likelihood vectors [Sch20].

The weights Ω(x, y) determine the regularization properties of the similarity map, cf. Remark 2.2 below.
They satisfy (2.2) and the additional constraint∑

y∈N (x)

Ω(x, y) = 1, ∀x ∈ V. (2.34)

The assignment flow is induced on the assignment manifold W by solutions W (t, x) = W (x)(t) of the
system of nonlinear ODEs

Ẇ (x) = RW (x)S(W )(x), W (0, x) = W (x)(0) ∈ 1S , x ∈ V, (2.35)

where the map
Rp = Diag(p)− pp>, p ∈ S (2.36)

corresponds to the inverse metric tensor expressed in the embedding coordinates of the ambient Euclidean
space Rc, which turns the right-hand side into the tangent vector field

V 3 x 7→ RW (x)S(W )(x) = Diag
(
W (x)

)
S(W )(x)− 〈W (x), S(W )(x)〉W (x) ∈ T0. (2.37)

Integrating the system (2.35) numerically [ZSPS20] yields integral assignment vectors W (t, x), x ∈ V , for
t→∞, that uniquely assign a label from the set X ∗ to each data point X(x) [ZZS21].

Remark 2.2 (Regularization). From the viewpoint of variational imaging, regularization of the assignment
flow has to be understood in a broad sense: The parameters Ω define by (2.32), at each location x and locally
within neighborhoods N (x), what similarity of the collection of likelihood vectors L(W )(y), y ∈ N (x),
which represent the input data, really means in terms of a corresponding geometric average, called similarity
vector S(W )(x). Unlike traditional variational approaches where regularization affects the primary variables
directly, regularization of the assignment flow is accomplished more effectivly by affecting velocities that
generate the primary assignment variables: the vector field S(W ) drives the assignment flow (2.35). Figure
2.3 illustrates two applications of the assignment flow approach using data-driven nonlocal regularization.
Learning the regularization parameters Ω from data was studied by [HSPS21, ZPS22].

2.2.3. S-Flow Parametrization. We adopt from [SS21, Prop. 3.6] the S-parametrization of the assignment
flow system (2.35)

Ṡ = RS(ΩS), S(0) = exp1W (−ΩDX ), (2.38a)

Ẇ = RW (S), W (0) = 1W , 1W(x) = 1S , x ∈ V, (2.38b)
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L(W )(x)

S(W )(x)W (t, x)

Ẇ = RW (x)S(W )(x)

DX (x)

X∗j , j ∈ JX(x), x ∈ V
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matrix

similarity
matrix

data

assignment flow

metric space X assignment manifoldW

expW (x)
S(0)(x)

exp1W (−ΩDX )

min
S∈W

J(S) = −1
2〈S,ΩS〉

via

Ṡ(x) = RS(ΩS)(x)

nonlocal geometric diffusion

W (t) = exp1W

( ∫ t
0 Π0S(τ)dτ

)

∂tS(x, t) = RS(x,t)

(
1
2D

α
(
ΘGα(S)

)
+ λS

)
(x, t)

Se
ct

io
n

3

FIGURE 2.2. Inference of label assignments via assignment flows. Center column: Application task of
assigning data to prototypes in a metric space. Right column: Overview of the geometric approach [ÅPSS17].
The data are represented by the distance matrix DX and by the likelihood vector field L(W ) on the assignment
manifoldW . The similarity vectors S(W )(x), determined through geometric averaging of the likelihood vec-
tors, drive the assignment flow whose numerical geometric integration result in spatially coherent and unique
label assignment to the data. Left column: Alternative equivalent reformulation of the assignment flow [SS21]
which separates (i) the influence of the data that only determine the initial point of the flow (cf. (2.38a)), and
(ii) the influence of the parameters Ω that parametrize the vector field which drives the assignment flow. This
enables to derive the novel nonlocal geometric diffusion equation in Section 3.

where both S and W are points onW and hence have the format (2.23) and

RS(ΩS)(x) = RS(x)

(
(ΩS)(x)

)
, (ΩS)(x) =

∑
y∈N (x)

Ω(x, y)S(y), (2.39)

exp1W (−ΩDX ) :=
(
. . . ,Exp1S ◦R1S (−(ΩDX )(x)), . . .

)> ∈ W, x ∈ V, (2.40)

with the mappings Expp, Rp, p ∈ S defined by (2.33) and (2.36), respectively. In view of (2.40), we define
the lifting map

expp : T0 → S, expp(v) := Expp ◦Rpv =
p� ev

〈p, ev〉
, p ∈ S, v ∈ T0 (2.41)

which satisfies

expexpp(v)(v
′) = expp(v + v′), p ∈ S, v, v′ ∈ T0. (2.42a)

In addition, one has (cf. (2.24), (2.26))

expp(d) = expp(Π0d), ∀d ∈ Rc. (2.42b)

Analogous to (2.40), the lifting map (2.41) extends to

expS : T0 →W, expS(V ) =
(
. . . , expS(x)

(
V (x)

)
, . . .

)
(2.43a)

and the relations (2.42) extend to

expexpS(V )(V
′) = expS(V + V ′), S ∈ W, V, V ′ ∈ T0, (2.44a)

expS(D) = expS(Π0D), ∀D ∈ Rn×c. (2.44b)
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Parametrization (2.38) has the advantage that W (t) depends on S(t), but not vice versa. As a conse-
quence, it suffices to focus on (2.38a) since its solution S(t) determines the solution to (2.38b) by [ZZS21,
Prop. 2.1.3]

W (t) = exp1W

(∫ t

0
Π0S(τ)dτ

)
. (2.45)

In addition, (2.38a) was shown in [SS21] to be the Riemannian gradient descent flow with respect to the
potential

J : W → R, J(S) = −1

2
〈S,ΩS〉 =

1

4

∑
x∈V

∑
y∈N (x)

Ω(x, y)‖S(x)− S(y)‖2 − 1

2
‖S‖2F , (2.46)

where ‖ · ‖F denotes the Frobenius (matrix) norm and the vector field V 3 x 7→ S(x) ∈ S is identified with
the matrix

S = (Sj(x))x∈V, j∈[c] ∈ Rn×c++ (2.47)
such that (2.39) can be written as(

(ΩS)(x)
)
j

=
∑

y∈N (x)

(
Ω(x, y)S(y)

)
j

=
∑

y∈N (x)

Ω(x, y)S(y, j) = (ΩS)x,j . (2.48)

Convergence and stability results for the gradient flow (2.38a) have been established by [ZZS21].

3. NONLOCAL GRAPH-PDE

In this section, we show that the assignment flow corresponds to a particular nonlocal diffusion process.
This results in an equivalent formulation of the Riemannian gradient flow (2.38a) in terms of a suitable
nonlinear extension of the nonlocal linear diffusion operator (2.17).

3.1. S-Flow: Non-Local PDE Formulation. We start with specifying a general class of parameter matrices
Ω satisfying (2.2) and (2.34) in terms of an anti-symmetric and symmetric mappings α ∈ FV×V and Θ ∈
FV×V respectively.

Lemma 3.1. Let
α ∈ FV×V ,
Θ ∈ FV×V ,

α(y, x) = −α(x, y), ∀x, y ∈ FV×V ,
Θ(x, y) = Θ(y, x) ≥ 0, ∀x, y ∈ FV×V ,

(3.1)

be anti-symmetric and nonnegative symmetric mappings, respectively. Assume further that α satisfies

α(x, y) = 0, ∀x, y ∈ VαI . (3.2)

Then, for neighborhoods N (x) defined by (2.3) and with parameter matrix

Ω(x, y) =

{
Θ(x, y)α2(x, y), if x 6= y,

Θ(x, x), if x = y,
x, y ∈ V, (3.3)

for each function f ∈ FV with f |VαI = 0, the identity∑
y∈V

Ω(x, y)f(y) =
1

2
Dα
(
ΘGα(f)

)
(x) + λ(x)f(x), ∀x ∈ V, ∀f ∈ FV : f

∣∣
VαI

= 0 (3.4)

holds with Dα,Gα given by (2.10),(2.14) and

λ(x) =
∑
y∈V

Θ(x, y)α2(x, y) + Θ(x, x), x ∈ V. (3.5)
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FIGURE 2.3. Two image labeling scenarios demonstrating the influence of nonlocal regularization. Top: Ap-
plication of assignment flows to a 3D medical imaging problem for segmenting the human retina (see [SBS21]
a detailed exposition). (a): A B-scan from a 3D OCT-volume showing a section of the human retina that is
corrupted by speckle noise. (b): The corresponding ground truth labeling with ordered retina layers. (c): Output
from a Resnet that serves as the distance matrix (2.28). (d): Result of applying assignment flow with local
neighborhoods given by a 3D seven point stencil. (e): Labeling obtained with nonlocal uniform neighborhoods
of size |N | = 11×11×11. Increasing the connectivity leads to more accurate labeling that satisfy the ordering
constraint depicted in (b). Bottom: Labeling of noisy data by assignment flows with data-driven parameters
Ω determined by nonlocal means [BCM10] using patches of size 7 × 7 pixels. (f): Synthetic image with thin
repetitive structure. (g): Severly corrupted input image to be labeled with X ∗ = { , , }. (h),(i): Labeling by
the assignment flow that was regularized with neighborhood sizes |N | = 3×3 and |N | = 11×11, respectively.
Enlarging the neighborhood size |N | increases labeling accuracy.

In addition, if λ(x) ≤ 1 in (3.5) for all x ∈ V , then Ω given by (3.3) satisfies (2.2), and equality λ(x) =
1, ∀x ∈ V is achieved if property (2.34) holds.

Proof. Appendix A.1.

Remark 3.2 (Comments). Lemma 3.1 characterizes a class of parameter matrices Ω whose action (3.4)
admits an representation using the nonlocal operators from Section 2.1.

Some comments follow on parameter matrices not covered by Lemma 3.1, due to the imposed constraints.
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(i) By ignoring the nonnegativity constraint of (3.1) imposed on Ω through the mapping Θ, Lemma 3.1
additionally covers a class of nonlocal graph Laplacians proposed in [ETT15] and [GO09] for the aim
of image inpainting. We refer to Section 4 for a more detailed discussion.

(ii) Due to assuming symmetry of the mapping Θ, formulation (3.3) does not cover nonlocal diffusion
processes on directed graphs (V, E ,Ω).

(iii) Imposing zero nonlocal Dirichlet boundary conditions is essential for relating assignment flows to the
specific class of nonlocal PDEs related to (3.4), see Proposition 3.3 below.

As argued in [ZZS21] by a range of counterexamples, using nonsymmetric parameter matrices Ω com-
promises convergence of the assignment flow (2.38a) to integral solutions (labelings) and is therefore not
considered. The study of more general parameter matrices is left for future work, see Section 8 and Section
4.1 for modifying the identity (3.4) in view of nonsymmetric parameter matrices Ω.

Next, we generalize the common local boundary conditions for PDEs to nonlocal volume constraints for
nonlocal PDEs on discrete domains. Following [DGLZ12], given an antisymmetric mapping α as in (2.8)
and Lemma 3.1, the natural domains VαIN ,V

α
ID for imposing nonlocal Neumann and Dirichlet constraints are

given by a disjoint decomposition of the interaction domain (2.8)

VαI = VαIN ∪̇V
α
ID . (3.6)

The following proposition reveals how the flow (2.38a), with Ω satisfying the assumptions of Lemma 3.1,
can be reformulated as a nonlocal partial difference equation with zero nonlocal Dirichlet boundary condition
imposed on the entire interaction domain, i.e. VαI = VαID . Recall the definition of the manifold S of discrete
probability vectors with full support in connection with Eq. (2.21).

Proposition 3.3. (S-flow as nonlocal G-PDE) Let α,Θ ∈ FV×V be as in (3.2). Then the flow (2.38a) with
Ω given through (3.3) admits the representation

∂tS(x, t) = RS(x,t)

(1

2
Dα
(
ΘGα(S)

)
+ λS

)
(x, t), on V × R+, (3.7a)

S(x, t) = 0, on VαI × R+, (3.7b)

S(x, 0) = S(x)(0), on V × R+, (3.7c)

where λ = λ(x) is given by (3.2) and S ∈ FV,Rc+ denotes the zero extension of the S-valued vector field
S ∈ FV,S to the interaction domain VαI .

Proof. Appendix A.1.
Proposition 3.3 states the equivalence of the potential flow (2.38a), with Ω defined by (3.3), and the

nonlocal diffusion process (3.7) with zero nonlocal Dirichlet boundary condition. We now explain that the
system (3.7a) can represent any descent flow of the form (2.38a) defined in terms of an arbitrary nonnegative
symmetric mapping Ω ∈ FV×V . Specifically, given such a mapping Ω, let the mappings α̃, Θ̃ ∈ FV×V be
defined by

Θ̃(x, y) =

{
Ω(x, y) if y ∈ N (x),

0 else
, α̃2(x, y) = 1, x, y ∈ V. (3.8)

Further, denote by Θ, α ∈ FV×V the extensions of α̃, Θ̃ to V × V by 0, that is

Θ(x, y) =
(
δV×V(Θ̃)

)
(x, y), α(x, y) :=

(
δV×V(α̃)

)
(x, y) x, y ∈ V, (3.9)

where δV×V : Zd × Zd → {0, 1} is the indicator function of the set V × V ⊂ Zd × Zd. Then the potential
flow (2.38a) with Ω satisfying Ω(x, y) = Ω(y, x) is equivalently represented by the system (3.7) with an
empty interaction domain (2.8). This shows how Proposition 3.3 generalizes the assignment flow introduced
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in Section 2.2 by ignoring the constraint (2.34) imposed on Ω, and thus enables to use a broader class of
parameter matrices Ω controlling the labeling process; see also Remark 3.2.

3.2. Tangent-Space Parametrization of the S-Flow G-PDE. Because S(x, t) solving (3.7) evolves on the
non-Euclidean space S, applying some standard discretization in order to evaluate (3.7) numerically will not
work. Therefore, motivated by the work [ZSPS20] on the geometric numerical integration of the original
assignment flow system (2.35), we devise a parametrization of (3.7) on the flat tangent space (2.24) by means
of the equation

S(t) = expS0(V (t)) ∈ W, V (t) ∈ T0, S0 = S(0) ∈ W, (3.10)

where analogous to (2.40)

expS0(V (t)) =
(
. . . , expS0(x)(−V (x, t)), . . .

)> ∈ W (3.11)

with expS0(x) given by (2.41). Applying d
dt to both sides and using the expression of the differential of the

mapping expS0 due to [SS21, Lemma 3.1], we get

Ṡ(t) = RexpS0 (V (t))V̇ (t)
(3.10)
= RS(t)V̇ (t). (3.12)

Comparing this equation and (2.38a), and taking into account RS = RSΠ0, shows that V (t) solving the
nonlinear ODE

V̇ (t) = Π0Ω expS0(V (t)), V (0) = 0 (3.13)

determines S(t) by (3.10) solving (2.38a). Hence it suffices to focus on (3.13) which evolves on the flat
space T0. Repeating the derivation above that resulted in the G-PDE representation (3.7) of the S-flow
(2.38a), yields the nonlinear PDE representation of (3.13)

∂tV (x, t) =
(1

2
Dα
(
ΘGα(expS0(V ))

)
+ λ expS0(V )

)
(x, t) on V × R+, (3.14a)

V (x, t) = 0 on VαI × R+, (3.14b)

V (x, 0) = V (x)(0) on V × R+, (3.14c)

where V ∈ FV,T0 denotes the zero extension of the T0-valued vector field to the interaction domain VαI .
From the numerical point of view, this new formulation (3.10), (3.14) has the following expedient properties.
Firstly, using a parameter matrix as specified by (3.3) and (3.9) enables to define the entire system (3.14) on
V . Secondly, since V (x, t) evolves on the flat space T0, numerical techniques of geometric integration as
studied by [ZSPS20] can here be applied as well. We utilize this fact in Section 3.4.1 and in Section 5.

3.3. Nonlocal Balance Law. A key property of PDE-based models are balance laws implied by the model;
see [DGLZ13, Section 7] for a discussion of various scenarios. The following proposition reveals a nonlocal
balance law of the assignment flow based on the novel G-PDE-based parametrization (3.14), that we express
for this purpose in the form

∂tV (x, t) +Dα(F (V ))(x, t) = b(x, t), b(x, t) = λ(x)S(x, t), x ∈ V, (3.15a)

F (V (t))(x, y) = −1

2

(
ΘGα

(
expS0(V (t))

))
(x, y), (3.15b)

where S(x, t) = expS0(V (x, t)) is given by (3.10) and λ(x) is given by (3.5).
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Proposition 3.4 (nonlocal balance law of assignment flows). Under the assumptions of Lemma 3.1, let
V (t) solve (3.14). Then, for each component Sj(t) = {Sj(x, t) : x ∈ V}, j ∈ [c], of S(t) = expS0(V (t)),
the identity

1

2

d

dt
〈Sj ,1〉V +

1

2
〈Gα(Sj),ΘGα(Sj)〉V×V + 〈Sj , φS − λSj〉V

+ 〈Sj ,Nα(ΘGα(Sj))〉VIα = 0
(3.16)

holds, where the inner products are given by (2.5) and (2.6), and φS(·) ∈ FV is defined in terms of S(t) ∈ W
by

φS : V → R, x 7→
〈
S(x),Π0

(
ΩS
)
(x)〉. (3.17)

Proof. Appendix A.2.

The nonlocal balance law (3.16) comprises four terms. Since
∑

j∈[c] Sj(x) = 1 at each vertex x ∈ V ,
the first term of (3.16) measures the rate of ‘mass’ assigned to label j over the entire image. This rate is
governed by two interacting processes corresponding to the three remaining terms:

(i) spatial propagation of assignment mass through the nonlocal diffusion process including nonlocal
boundary conditions (second and fourth term);

(ii) exchange of assignment mass with the remaining labels {l ∈ [c] : l 6= j} (third term comprising the
function φS (3.17)).

We point out that other approaches to image labeling, including Markov random fields and deep networks,
do not reveal the flow of information during inference in such an explicit manner.

3.4. Illustration: Parametrization and Nonlocal Boundary Conditions. In this section, we illustrate two
aspects of the mathematical results presented above by numerical results:

(1) The use of geometric integration for numerically solving the nonlocal G-PDE (3.7). Here we exploit a
basic numerical scheme established for the assignment flow (2.38a) and the one-to-one correspondence
to the nonlocal G-PDE (3.7), due to Proposition 3.3.

(2) The effect of zero vs. non-zero nonlocal Dirichlet boundary conditions and uniform vs. non-uniform
parametrizations (3.3). Using non-zero boundary conditions refers to the observation stated above in
connection with Equations (3.8), (3.9): the nonlocal G-PDE (3.7) generalizes the assignment flow when
constraints are dropped. Here specifically: the homogeneous Dirichlet boundary condition may be non-
homogeneous, and the constraint (2.34) is ignored; see also Remark 3.2.

Topic (1) is addressed here to explain how the results illustrating topic (2) were computed, and to set the
stage for Section 5 that presents an advanced numerical scheme. Item (2) merely illustrates basic choices
of the parametrization and boundary conditions. More advanced generalizations of the assignment flow are
conceivable, but beyond the scope of this paper; see Section 8.

3.4.1. Numerically Solving the Nonlocal G-PDE By Geometric Integration. According to Section 3.2, im-
posing the homogeneous Dirichlet condition via the interaction domain (2.8) makes the right-hand side of
(3.14a) equivalent to (3.13). Applying to (3.14a) a simple explicit time discretization with stepsize h results
in the iterative update formula

V (x, t+ h) ≈ V (x, t) + hΠ0 expS0(x)(ΩV (x, t)), h > 0. (3.18)
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By virtue of the parametrization (3.10), one recovers with any nonnegative symmetric mapping Ω as in
Lemma 3.1 the explicit geometric Euler scheme onW

S(t+ h) ≈ expS0

(
V (t) + hV̇ (t)

) (2.42a)
(3.10)
= expS(t)

(
hV̇ (t)

)
(3.19a)

(2.42b)
(3.13)
= expS(t)

(
hΩS(t)

)
. (3.19b)

Higher order geometric integration methods [ZSPS20] generalizing (3.19) can be applied in a similar way.
This provides new perspective on solving a certain class of nonlocal G-PDEs numerically, conforming to the
underlying geometry, as we demonstrate in Section 5.2.

3.4.2. Basic Parametrizations, Effect of Nonlocal Dirichlet Boundary Conditions. We consider two different
parametrizations as well as zero and non-zero nonlocal Dirichlet boundary conditions.

Uniform parametrization: Mappings Θ, α ∈ FV×V are given by

|N (x)| = N , ∀x, |N | = (2k + 1)× (2k + 1), k ∈ N (3.20a)

α2(x, y) =

{
1

(2k+1)2 if y ∈ N (x)

0 otherwise
, Θ(x, y) =

{
1

(2k+1)2 if x = y

1 otherwise
. (3.20b)

Nonuniform parametrization: Uniform neighborhoods as in (3.20a) and mappings Θ, α ∈ FV×V by

α2(x, y) =

e−
‖x−y‖2

2σ2
s if y ∈ N (x)

0 otherwise
, σs > 0,

Θ(x, y) =

{
e−Gσp∗‖s(x)−s(y)‖2 if y ∈ N (x)

0 otherwise
, σp > 0,

(3.21)

where the nonlocal function Θ is designed using a patchwise similarity measure analogous to the
basic nonlocal means approach [BCM10]: s(x) = {s(x, z) : z ∈ V, s(x, z) = X(z)} with X ∈
FV,Rc denoting the zero extension of data X ∈ FV,Rc to VαI . Gσp is the Gaussian kernel at scale σp
and ∗ denotes spatial convolution.

We iterated (3.19) with step size h = 1 until assignment states (2.38b) of low average entropy 10−3 were
reached. To ensure a fair comparison and to assess solely the effects of the boundary conditions through
nonlocal regularization, we initialized (3.7) in the same way as (2.38a) and adopted an uniform encoding of
the 31 labels as described by [ÅPSS17, Figure 6].

Figure 3.1 depicts labelings computed using the uniform parametrization with zero and non-zero nonlocal
Dirichlet boundary conditions, respectively. Inspecting panels (c) (zero boundary condition) and (d) (non-
zero boundary condition) shows that using the latter may improve labeling near the boundary (cf. close-up
views), whereas the labelings almost agree in the interior of the domain.

Figure 3.2 shows how the average entropy values of label assignments decrease as the iteration proceeds
(left panel) and the number of iterations required to converge (right panel), for different neighborhood sizes.
Moreover, a closer look on the right panel of Figure 3.2 reveals besides a slightly slower convergence of
the scheme (3.18) applied to the nonlocal G-PDE (3.14) (red curve), the dependence of number of iterations
required until convergence is comparable to the S-flow (green curve). Consequently, generalizing the S-
flow by the nonlocal model (3.7) does not have a detrimental effect on the overall numerical behavior. We
observe, in particular, that integral label assignments corresponding to zero entropy are achieved no matter
which boundary condition is used, at comparable computational costs.
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(a) (b) (c) (d)(a) (b) (c) (d)(a) (b) (c) (d)(a) (b) (c) (d)(a) (b) (c) (d)
Fig. 2: Labeling through nonlocal geometric flows. (a) Ground truth with 31 labels.
(b) Noisy input data used to evaluate (24a) and (32). (c) Labeling returned by (24a)
corresponding to a zero extension to the interaction domain. (d) Labeling returned
by (41) with a uniform extension to the interaction domain in terms of Θ,α specified
above. The close-up view show differences close to the boundary, whereas the results
in the interior domain are almost equal.
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Fig. 3: Left: Convergence rates of the scheme (49) solving (32) with nonempty inter-
action domain specified by Θ,α above. The convergence behavior is rather insensitive
with respect to the neighborhood size. Right: Number of iterations until convergence
for (32) ( ) and (24a) ( ). This result shows that different nonlocal boundary condi-
tions have only a minor influence on the convergence of the flow to labelings.
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Fig. 4: From left to right: Labeling results using (32) for nonuniform interaction domains
of size N (x) = 3 × 3, 7 × 7 and 15 × 15, with close up views indicating the regular-
ization properties of the nonlocal PDE (32) with zero Dirichlet conditions. Schematic
illustration of the nonlocal interaction domain y ∈ Vα

I (red area) induced by nodes
(blue area) according to (50) with a Gaussian window of size 5× 5 centered at x ∈ V.
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FIGURE 3.1. Labeling through the nonlocal geometric assignment flow with uniform parametrization (3.20b)
and neighborhood size |N | = 7. (a) Ground truth with 31 labels. (b) Noisy input data used to evaluate (2.38a)
and (3.7), respectively. (c) Labeling returned when using the zero nonlocal Dirichlet boundary condition. (d)
Labeling returned when using the non-zero nonlocal Dirichlet boundary condition (uniform extension to the
interaction domain). The close-up views show differences close to the boundary, whereas the results in the
interior domain are almost equal.
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FIGURE 3.2. Left: Convergence rates of the scheme (3.19) solving (3.7) with nonzero nonlocal Dirichlet
boundary condition. The convergence behavior is rather insensitive with respect to the neighborhood size |N |.
Right: Number of iterations until convergence for (3.7) ( ) and (2.38a) ( ), with zero nonlocal boundary condi-
tion in the latter case. The result shows that different nonlocal boundary conditions have only a minor influence
on the required number of geometric integration steps.

Assignment Flows and Nonlocal PDEs on Graphs 13

(a) (b) (c) (d)(a) (b) (c) (d)(a) (b) (c) (d)(a) (b) (c) (d)(a) (b) (c) (d)
Fig. 2: Labeling through nonlocal geometric flows. (a) Ground truth with 31 labels.
(b) Noisy input data used to evaluate (24a) and (32). (c) Labeling returned by (24a)
corresponding to a zero extension to the interaction domain. (d) Labeling returned
by (41) with a uniform extension to the interaction domain in terms of Θ,α specified
above. The close-up view show differences close to the boundary, whereas the results
in the interior domain are almost equal.
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Fig. 3: Left: Convergence rates of the scheme (49) solving (32) with nonempty inter-
action domain specified by Θ,α above. The convergence behavior is rather insensitive
with respect to the neighborhood size. Right: Number of iterations until convergence
for (32) ( ) and (24a) ( ). This result shows that different nonlocal boundary condi-
tions have only a minor influence on the convergence of the flow to labelings.
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Fig. 4: From left to right: Labeling results using (32) for nonuniform interaction domains
of size N (x) = 3 × 3, 7 × 7 and 15 × 15, with close up views indicating the regular-
ization properties of the nonlocal PDE (32) with zero Dirichlet conditions. Schematic
illustration of the nonlocal interaction domain y ∈ Vα

I (red area) induced by nodes
(blue area) according to (50) with a Gaussian window of size 5× 5 centered at x ∈ V.
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FIGURE 3.3. From left to right: Labeling results using (3.7) with the non-uniform parametrization (3.21),
zero non-local Dirichlet boundary conditions and neighborhood sizes |N | ∈ {3×3, 7×7, 15×15}. Schematic
illustration of the nonlocal interaction domain y ∈ VαI (red area) induced by nodes (blue area) in N (x) with
|N | = 5× 5. Using nonuniform weights (3.21) improves labeling accuracy.
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Iterating (3.19) with step size h = 0.1 and σs = 1, σp = 5 in (3.21) yields labeling results for dif-
ferent patch sizes as depicted by Figure 3.3. As opposed to segmentation results obtained with uniform
parametrization (3.20b) for N = 7 depicted in Figure 3.1(d), a direct comparison with Figure 3.3 (close up
views) indicates more accurate labelings when using regularization as given by the nonuniform parametriza-
tion (3.21).

4. RELATED WORK

In this section, we discuss how the system (3.7) relates to approaches based on PDEs and variational
models in the literature. Specifically, we conduct an analytical ablation study of the nonlocal model (3.7)
in order to clarify the impact of omitting operators of the nonlocal model and the connection to existing
methods. We exhibit both structural similarities from the viewpoint of diffusion processes and differences
that account for the different scope of our approach: labeling metric data on graphs.

4.1. General Nonlocal Processes on Graphs. We consider again the identity (3.4) that defines the nonlocal
G-PDE (3.7) in terms of symmetric parameter mapping (3.3) and show next how (3.4) is generalized when
a nonsymmetric parameter matrix Ω ∈ FZd×Zd is used. Specifically, suppose a kernel k ∈ FZd×Zd is given
and the induced nonlocal functional

Lkf(x) =
∑
y∈Zd

(
f(y)k(y, x)− f(x)k(x, y)

)
. (4.1)

Then, for a mapping α that satisfies α2(x, y) = 1 whenever k(x, y) 6= 0, the decomposition

k = ks + ka with ks =
k + k

′

2
, ka =

k − k′

2
, k

′
(x, y) := k(y, x), x, y ∈ Zd, (4.2)

results in the representation

k(x, y) =

{
2Θ(x, y)α2(x, y) + α(x, y)ν(x, y) x 6= y,

2Θ(x, x) x = y
(4.3)

of the kernel k in terms of α,Θ ∈ FZd×Zd and ν ∈ FZd×Zd given by

Θ(x, y) :=
1

2
ks(x, y), ν(x, y) := ka(x, y)α(x, y), (4.4)

where the mapping ν is a symmetric due to the antisymmetry of α. Inserting (4.3) into (4.1) yields

Lkf(x) = 2
∑
y∈Zd

Θ(x, y)α2(x, y)
(
f(y)− f(x)

)
−
∑
y∈Zd

α(x, y)ν(x, y)
(
f(y)− f(x)

)
. (4.5)

and applying nonlocal calculus of Section 2.1 along with Lemma (3.1), we arrive at an equivalent represen-
tation of Lk through nonlocal divergence and gradient operators

Lkf(x)
(4.3)
= Dα

(
ΘGα(f)

)
(x)︸ ︷︷ ︸

diffusion

−Dα(νf)(x)︸ ︷︷ ︸
convection

+λ(x)f(x)︸ ︷︷ ︸
fidelity

, (4.6)

where ν plays the role of the convection parameter. Consequently, on a grid graph G with V ⊂ Zd and setting
Ω by (4.3), we get

∂tS(x, t) = RS(x,t)

(
Dα
(
ΘGα(S)

)
−Dα(νS)

)
(x, t) + λ(x)S(x, t) on V × R+, (4.7a)

S(x, t) = 0 on VαI × R+, (4.7b)

S(x, 0) = S(x)(0) on V × R+, (4.7c)
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generalized G-PDE

∂tS = RS

(
Dα
(
ΘGα(S)

)
−Dα(νS)

)
+ λS

ν = 0

nonlocal G-PDE

∂tS = RS

(
Dα
(
ΘGα(S)

))
+ λS

Section 3

nonlocal diffusion [AVMRTM10]

∂tf =
1

2
Dα(ΘGαf) + λf

S-flow

∂tS = RS

(
Dα
(
ΘGα(S)

))
+ S Section 2.2

local PDE
RS∗

(
−∆S∗ − S∗

)
= 0Section 7.4

Section 7.1 Section 7.2 Section 7.3

nonlocal laplacian [ETT15]

∂tf =
1

2
Dα(Gαf)

descent flow [GO09]

∂tf =
1

2
Dα(Gαf)

RS = id

labeling

FIGURE 4.1. Overview of nonlocal diffusion processes proposed in related work [ETT15, GO09,
AVMRTM10] and their interrelations to the nonlocal G-PDE (4.7). The approaches highlighted by the blue
region only model the image labeling problem. Edge labels refer to the corresponding sections of the analytical
ablation study.

Labeling Denoising and Inpainting

Parameters G-PDE (3.7) Local PDE [SS21] Nonl. Laplacian [ETT15] Descent Flow [GO09]

Θ ≥ 0 3 7 7 7
λ λ > 0 λ = 1 λ = 0 λ = 0
RS 3 3 7 7
ν 7 7 7 7

VαI ⊆ Zd \ V ∂Vh ∂A ⊂ V ∅
S∗(t→∞) 3 3 7 7

TABLE 1. Summary of the analytical ablation study. Key differences of our approach to existing nonlocal
diffusion models are inclusion of the replicator operator RS and a nonzero fidelity term λS that results in
nontrivial solution at the steady state S∗ = S(t =∞).

with the interaction domain (2.8) directly expressed through the connectivity of kernel k by

VαI = {x ∈ Zd \ V : k(x, y) 6= 0 for some y ∈ V}. (4.8)

In view of (4.7), we therefore recognize the system (3.7) as specific nonlocal process that is induced by a
nonnegative symmetric kernels k with nonzero fidelity parameter λ, that account for nontrivial steady state
solutions and zero convection (ν(x, y) = 0).

In the following sections, we relate different established nonlocal models to the proposed G-PDE (3.7) by
adapting the parameter mappings Θ, α ∈ FV×V that parametrize the G-PDE and determine the interaction
domain (2.8). Figure 4.1 provides an overview of the analytical ablation study by specifying the model and
the corresponding section where it is derived from the generalized G-PDE (4.7). Table 1 lists the involved
parameters for each model.
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2h2

 −ϑ 2ϑ− 2 −ϑ
2ϑ− 2 8− 8ϑ 2ϑ− 2
−ϑ 2ϑ− 2 −ϑ



ϑ = 0

ϑ 6= 0

FIGURE 4.2. Illustration of the rectangular grid Vh and the interaction domain VαI represented by ( ) and ( ),
respectively, with α ∈ FV×V given by (4.10) for a family of discrete Laplacians −∆h

ϑ proposed in [WW20].
Left: Neighborhood Ñ (x) specified in terms of the connectivity of the standard 5−point stencil (ϑ = 0). The
corresponding interaction domain is part of the local boundary VαI ⊂ ∂Vh. Right: Analogous construction with
the 9-point stencil (ϑ 6= 0). The interaction domain coincides with the discrete local boundary configuration,
i.e. VαI = ∂Vh.

4.2. Relation to a Local PDE that Characterizes Labelings. We focus on the connection of the system
(3.7) and the continuous-domain local formulation of (2.38a) on an open simply connected bounded domain
D ⊂ R2, as introduced by [SS21]. The variational formulation has been rigorously derived in [SS21] along
with a PDE that formally characterizes solutions S∗ = limt→∞ S(t) ∈ W only under strong regularity
assumptions. This nonlinear PDE reads

RS∗(x)

(
−∆S∗(x)− S∗(x)

)
= 0, x ∈ D. (4.9)

We next show that our novel approach (3.7) includes, as a special case, a natural discretization of (4.9)
on the spatial discrete grid Vh = hZd ∩ D with boundary ∂Vh specified by a small spatial scale parameter
h > 0. (4.9) is complemented by local zero Dirichlet boundary conditions imposed on S∗ on ∂Vh. Adopting
the sign convention Lhϑ = −∆h

ϑ for different discretizations of the continuous negative Laplacian on Vh, by
a nine-point stencil [WW20] parametrized by ϑ ∈ [0, 1], lead to strictly positive entries Lhϑ(x, x) > 0 on the
diagonal.

We introduce the weighted undirected graph (Vh,Ωh) and identify nodes x = (k, l) ∈ Vh with interior
grid points (hk, hl) ∈ Vh (grid graph). Let the parameter matrix Ωh be given by (3.3) and the mappings
α,Θ ∈ FV×V defined by

α2(x, y) =

{
1, y ∈ Ñ (x),

0, else,
, Θ(x, y) =


−Lhϑ(x, y), y ∈ Ñ (x),

1− Lhϑ(x, x), x = y,

0 else ,
(4.10)

where the neighborhoods Ñ (x) = N (x) \ {x} represent the connectivity of the stencil of the discrete
Laplacian Lhϑ on the mesh Vh∪̇∂Vh. Recalling the definitions from Section 2.1 with respect to undirected
graphs and setting α by (4.10), the interaction domain (2.8) agrees for parameter choices ϑ 6= 0 with the
discrete local boundary, i.e. VαI = ∂Vh; see Figure 4.2 and the caption for further explanation. Then, for
each x ∈ Vh, the action of Ωh on S reads

(ΩhS)(x) =
∑

y∈Ñ (x)

−Lhϑ(x, y)S(y) +
(
1− Lhϑ(x, x)

)
S(x) = −

(
−∆h

ϑ(S)− S
)
(x), (4.11)

which is the discretization of (4.9) by Lhϑ multiplied by the minus sign. In particular, due to the relation
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RS(−W ) = −RS(W ) for W ∈ W , we conclude that the novel approach (3.7) includes the local PDE (4.9)
as special case and hence provides a natural nonlocal extension.

4.3. Continuous-Domain Nonlocal Diffusion Processes. We follow [AVMRTM10]. Consider a bounded
domain D ⊂ Rd and let J : Rd → R+ be a radial continuous function satisfying∫

Rd
J(x− y)dy = 1, J(0) > 0 ∀x ∈ Rd. (4.12)

The term J(x − y) in (4.12) may be interpreted as a probability density governing jumps from position
y ∈ Rd to x ∈ Rd. The authors of [AVMRTM10] introduced the integral operator

Lf(x) =

∫
Rd
J(x− y)f(y, t)dy − f(x, t), x ∈ Rd (4.13)

acting on f ∈ C(Rd,R+) and studied nonlocal linear diffusion processes of the form

∂tf(x, t) = Lf(x, t) on D × R+ (4.14a)

f(x, t) = g(x) on Rd \ D × R+, (4.14b)

f(x, 0) = f0 on Rd × R+, (4.14c)

where f0 ∈ C(D,R+) and g ∈ C(Rd\D,R+) specify the initial state and the nonlocal boundary condition of
the system (4.14), respectively. We compare this system with our model (3.7) and introduce, as in Section 4.3,
the weighted undirected graph (Vh,Ωh) with a Cartesian mesh Vh, with boundary ∂Vh and neighborhoods
(2.3), and with Ωh defined by (3.8) through

Θ(x, y) =


0, for x, y /∈ Vh,
J(0)− 1, for x = y,

1, else,
α2(x, y) = J(x− y). (4.15)

Then, for the particular case g = 0 in (4.14b) and using Equation (3.4) with λ(x) defined by (3.5), the
spatially discrete counterpart of (4.14) is the linear nonlocal scalar-valued diffusion process

∂tf(x, t) =
1

2
Dα(ΘGαf)(x, t) + λ(x)f(x, t) on V × R+, (4.16a)

f(x, t) = 0 on VαI × R+, (4.16b)

f(x, 0) = f0 on V × R+. (4.16c)

System (4.16) possess a structure which resembles the structure of nonlinear system (3.7) after dropping the
replicator mapping RS and assuming S(x) ∈ R to be a scalar-valued rather than simplex-valued S(x) ∈ S,
as in our approach.

This comparison shows by virtue of the structural similarity that assignment flows may be characterized as
genuine nonlocal diffusion processes. Essential differences, i.e. simplex-valued variables and the underlying
geometry, reflect the entirely different scope of this process, however: labeling metric data on graphs.

4.4. Nonlocal Variational Models in Image Analysis. We relate the system (4.16) to variational approaches
presented in [GO09] and to graph-based nonlocal PDEs proposed by [ELB08, ETT15].

Based on a scalar-valued positive function φ(t) which is convex in
√
twith φ(0) = 0, Gilboa et al. [GO09]

studied isotropic and anisotropic nonlocal regularization functionals on a continuous spatial domainD ⊂ Rd
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defined in terms of a nonnegative symmetric mapping ω : D ×D → R+:

Jφi (f) =

∫
D
φ(|∇ω(f)(x)|2)dx, (isotropic) (4.17a)

Jφa (f) =

∫
D

∫
D
φ(f(y)− f(x))2ω(x, y)dydx. (anisotropic) (4.17b)

(4.17a) involves the nonlocal graph-based gradient operator which for given neighborhoods N (x) reads

∇ωf(x) =
(
. . . , (f(y)− f(x))

√
ω(x, y), . . .

)T
, y ∈ N (x). (4.18)

Given an initial real valued function f0(x) on Ω, the variational models of (4.17) define dynamics in terms
of the steepest descent flows

∂tf(x, t) = −∂fJφi (f)(x, t), ∂tf(x, t) = −∂fJφa (f)(x, t), f(x, 0) = f0(x), (4.19)

where the variation with respect to f on right hand side of (4.19) is expressed in terms of (4.18) via

∂fJ
φ
i (f)(x, t) = −2

∫
D

(f(y, t)− f(x, t))ω(x, y)
(
φ
′
(|∇ωf(y, t)|2)(y) + φ

′
(|∇ωf(x, t)|2)(x)

)
dy,

(4.20)

∂fJ
φ
a (f)(x, t) = −4

∫
D

(
f(y, t)− f(x, t)

)
ω(x, y)φ

′(
(f(y, t)− f(x, t))2ω(x, y)

)
dy. (4.21)

Then, given a graph (V, E , ω) with neighborhoods as in Section 2.1, the discrete counterparts of the dynam-
ical systems (4.19) on V read

ḟ(x, t) =
∑

y∈N (x)

Aφω,f (x, y)f(y), ḟ(x, t) =
∑

y∈N (x)

Bφ
ω,f (x, y)f(y), (4.22)

where the mappings Aφω,f , B
φ
ω,f ∈ FV×V represent explicit expressions of the right-hand sides of (4.19) on

V

Aφω,f (x, y) =


2ω(x, y)

(
φ
′
(|∇ωf(y, t)|2)(y) + φ

′
(|∇ωf(x, t)|2)(x)

)
x 6= y,

−2
∑

z∈N (x)
z 6=x

ω(x, z)
(
φ
′
(|∇ωf(z, t)|2)(z) + φ

′
(|∇ωf(x, t)|2)(x)

)
x = y, (4.23a)

Bφ
ω,f (x, y) =


4ω(x, y)φ

′(
(f(z, t)− f(x, t))2ω(x, y)

)
x 6= y,

−4
∑

z∈N (x)
z 6=x

ω(x, z)φ
′(

(f(z, t)− f(x, t))2ω(x, y)
)
, x = y. (4.23b)

Depending on the specification of φ(t), the dynamics governed by the systems (4.22) define nonlinear nonlo-
cal diffusion processes with various smoothing properties according to the mappings (4.23). Specifically, for
φ(t) = t, the functionals (4.17) coincide as do the systems (4.22), since the mappings (4.23) do not depend
on f(x, t), but only on ω which is symmetric and nonnegative, and hence agree. Invoking Lemma 3.1 with
Ω ∈ FV×V defined through (4.23), setting Θ, α ∈ FV×V by Θ(x, y) = 1, α2(x, y) = 4ω(x, y), x 6= y and
Θ(x, x) = −4

∑
y∈N (x) ω(x, y), x ∈ V yields the decomposition (3.3) which characterizes (4.18) in terms

of the nonlocal operators from Section 2.1 if f|VαI = 0 holds, by means of relation (3.4). Consequently,
(4.22) admits the representation by (4.16) for the particular case of zero nonlocal Dirichlet conditions.

While the above approaches are well suited for image denoising and inpainting, our geometric approach
performs labeling of arbitrary metric data on arbitrary graphs.
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4.5. Nonlocal Graph Laplacians. Elmoataz et. al [ETT15] studied discrete nonlocal differential opera-
tors on weighted graphs (V, E , ω). Specifically, based on the nonlocal gradient operator (4.18), a class of
Laplacian operators acting on functions f ∈ FV was defined by

Lω,pf(x) =


β+(x)

∑
y∈N+(x)

(
∇ωf(x, y)

)p−1
+ β−(x)

∑
y∈N−(x)

(−1)p
(
∇ωf(x, y)

)p−1
, p ∈ [2,∞)

β+(x) max
y∈N+(x)

(
∇ωf(x, y)

)
+ β−(x) max

y∈N−(x)
(−1)p

(
∇ωf(x, y)

)
, p =∞,

(4.24a)

where

N+(x) = {y ∈ N (x) : f(y)− f(x) > 0}, N−(x) = {y ∈ N (x) : f(y)− f(x) < 0}. (4.24b)

As detailed in [ETT15, Section 4] depending on the weighting function ω ∈ FV×V and on the positive
functions β+, β− ∈ FV satisfying β+(x) + β−(x) = 1, x ∈ V , the Laplacians (4.24) enable to generalize
a broad class of variational approaches including [ELB08] whose Euler Lagrange equations involve graph
Laplacians.

In the following, we focus on undirected graphs (V, E , ω) with ω(x, y) = ω(y, x). Then, for the purpose
of data inpainting and following [ETT15], given a vertex set A ⊂ V together with a function g ∈ F∂A,Rc
specifying the boundary condition imposed on

∂A = {x ∈ V \ A : ∃y ∈ A with y ∈ N (x)}, (4.25)

the nonlocal Laplacian (4.24) generates a family of nonlocal discrete diffusion processes of the form

∂tf(x, t) = Lω,pf(x, t) on A× R+, (4.26a)

f(x, t) = g(x, t) on ∂A× R+, (4.26b)

f(x, 0) = f0(x) on A. (4.26c)

To establish a comparison with the proposed nonlocal formulation (3.7), we represent the model (4.26) with
g = 0 on ∂A in terms of the operators introduced in Section 2.1. Following [ETT15, Section 5] and setting
the weighting function

αf (x, y) =

{
β+(x)

√
ω(x, y)

p−1(∇ωf(x, y)
)p−2

, if f(y) > f(x),

β−(x)
√
ω(x, y)

p−1(∇ωf(y, x)
)p−2

, if f(y) < f(x),
(4.27)

the particular case p = 2 simplifies to a linear diffusion process (2.18) with (4.27) directly given in terms of
weights ω(x, y) prescribed by the adjacency relation of the graph V . Moreover, if at each vertex x ∈ V
the equation β+(x) = β−(x) = 1

2 holds, then for any p ∈ [2,∞) the mapping (4.27) is nonnega-
tive and symmetric. As a consequence, αf from (4.27) can substitute ω(x, y) in (2.18) and hence speci-
fies a representation of the form (2.17) when choosing the antisymmetric mapping α ∈ FV×V to satisfy
2α2(x, y) = αf (x, y). Finally, specifying the symmetric mapping Θ ∈ FV×V as Θ(x, y) = 1 if x 6= y and
Θ(x, x) = −

∑
y∈N (x) α

2(x, y), expresses the system (4.26) through (4.16) with V and VαI given by A and
∂A, respectively.

We conclude with a comment similar to the previous sections. While the similarity of the above math-
ematical structures to our approach is evident from the viewpoint of diffusion processes, the scope of our
approach, data labeling, differs and is not directly addressed by established diffusion-based approaches. We
further point out the different role of interaction domain (2.8). While for model (4.26) we set α through
(4.27) to satisfy VαI = ∂A which is subset of given set of vertices V , i.e. V = V as illustrated by the right
panel of 4.3), we focus in our work on mappings α that lead to an extension of V by vertices in Zd \ V , as
presented by the left panel of Figure 4.3.
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∈ V

∈ VαI

∈ V ∈

∈ A

∈ ∂A

nonlocal G-PDE (3.7) nonlocal approach [ETT15]

V

FIGURE 4.3. Schematic illustration of two different instances of VαI . Nodes ( ) and ( ) represent points of
the interaction domain VαI and the vertex set V , respectively, in terms of the mapping α ∈ FV×V . Left:
Boundary configuration for the nonlocal G-PDE (3.7) introduced in this paper. Nonzero interaction of nodes in
V with nodes outside the graph Zd \ V results in an extended domain V according to (2.6). Right: Boundary
configuration for the task of inpainting as proposed in [ETT15]. The parameter α is specified entirely on V
resulting in a disjoint decomposition V = A∪̇∂A where now VαI satisfies VαI = ∂A to represent the set of all
nodes with missing information V \ A.

5. NONCONVEX OPTIMIZATION BY GEOMETRIC INTEGRATION

We show in Section 5.1 how geometric integration provides a numerical scheme for solving the nonlo-
cal partial difference equation (3.7) on a regular discrete grid V by generating a sequence of states on W
that monotonically decrease the energy objective (2.46). In particular, we show that the geometric Euler
scheme is equivalent to the basic two-step iterative approach provided by [HAPD05] for solving nonconvex
optimization problems in DC (difference of convex functions) format.

In Section 5.2, we prove the monotonic decrease property for a novel class of geometric multistage inte-
gration schemes that speed up convergence and show the relation of this class to the nonconvex optimization
framework presented in [FM81, AFV18]

Figure 5.1 provides a schematic overview over key components of the two proposed algorithms, including
references to the corresponding subsections. Proofs are provided in Appendix A.4 to enable efficient reading.

5.1. First-Order Geometric Integration and DC-Programming. We focus on an one-stage iterative nu-
merical scheme derived by discretizing the explicit geometric Euler integration (3.19) in time with a fixed
time-step size h > 0. In this specific case, (3.19) generates the sequence of iterates for approximately solving
(2.38a) given by

(Sk)k≥1 ⊂ FV,W , Sk+1(x) = expSk(x)

(
h(ΩS)(x)

)
, S0(x) = exp1c

(
− DX (x)

ρ

)
, x ∈ V, (5.1)

where the index k represents the point in time kh. We next show that the sequence (5.1) locally minimizes the
potential (2.46) and hence, based on the formulation derived in Proposition 3.3, how geometric integration
provides a finite difference scheme for numerically solving the nonlocal G-PDE (3.7) for the particular case
of zero nonlocal boundary conditions.

Proposition 5.1. Let α,Θ ∈ FV×V , λ ∈ FV and Ω ∈ FV×V be given as in Lemma 3.1. Then the sequence
(5.1) satisfies

Sk+1(x) = expSk(x)

(
h
(1

2
Dα
(
ΘGα(hS

k
)
)

+ λS
k
)

(x)

)
, x ∈ V, (5.2)
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acceleration

initialization: S0 ∈ W , h > 0

Labeling S∗ as minimum of
the nonconvex functional (2.46)

min

S ∈ W
J(S) = −1

2
〈 Ω S, S〉

nonlocal connectivity

manifold constraint

Section 5.1 Section 5.2

Section 2,3

geometric DC accelerated geometric DC

initialization: S0 ∈ W , θ0 > 0

stepsize selection
hk ≥ 0 , Algorithm 4

if hk = 0

descent direction
dk = Π0ΩSk + hk

2 ΩRSk(ΩSk)
second order information

line search → Sk+1

convergence criterion
(Sk near the boundary)

explicit Euler update:
Sk+1 = expSk(hΠ0ΩSk), Algorithm 1

convergence criterion

final labeling S∗
yes

no

yes
no

FIGURE 5.1. Sketch of the two algorithmic schemes, Algorithm 1 and Algorithm 4, developed in Section 5.
Common basic components as well as essential differences are highlighted. The major difference corresponds to
the acceleration of the basic numerical scheme by geometric integration for solving the nonconvex DC program
displayed in the top box.

where the index k represents the point in time kh. We next show that the sequence (5.1) locally minimizes the
potential (2.46) and hence, based on the formulation derived in Proposition 3.3, how geometric integration
provides a finite difference scheme for numerically solving the nonlocal PDE (3.8) for the particular case of
zero nonlocal boundary conditions.

Proposition 5.1. Let α,Θ ∈ FV×V , λ ∈ FV and Ω ∈ FV×V be given as in Lemma 3.1. Then the sequence
(5.1) satisfies

Sk+1(x) = expSk(x)

(
h
(1

2
Dα
(
ΘGα(hS

k
)
)

+ λS
k
)

(x)

)
, x ∈ V, (5.2)

where the zero extension Sk of Sk to V is a discrete approximation S(hk) of the continuous time solution to
the system (3.8), initialized by S0(x) (5.1) with imposed zero nonlocal boundary conditions. In addition, if

h ≤ 1

|λmin(Ω)|
, (5.3)

where λmin(Ω) denotes the smallest eigenvalue of Ω, then the sequence (Sk) achieves the monotone decrease
property

J(Sk+1) ≤ J(Sk), k ∈ N (5.4)
for the potential function (2.46).

Proof. Equation (5.2) directly follows from Proposition 3.3, from the specification (2.32) of the similarity
mapping and from the relation expp = Expp ◦Rp for p ∈ S (cf. (2.40), (2.41)). Leveraging the parametriza-
tion (3.16) of system (3.8), discretization of (3.16) by forward finite differences with step size parameter
h > 0 yields for x ∈ V

V k+1(x)− V k(x)

h
=
(1

2
Dα
(
ΘGα(expS0(V k))

)
+ λ expS0(V k)

)
(x) (5.5)

FIGURE 5.1. Sketch of the two algorithmic schemes, Algorithm 1 and Algorithm 4, developed in Section 5.
Common basic components as well as essential differences are highlighted. The major difference corresponds to
the acceleration of the basic numerical scheme by geometric integration for solving the nonconvex DC program
displayed in the top box.

where the zero extension Sk of Sk to V is a discrete approximation S(hk) of the continuous time solution to
the system (3.7), initialized by S0(x) (5.1) with imposed zero nonlocal boundary conditions. In addition, if

h ≤ 1

|λmin(Ω)|
, (5.3)

where λmin(Ω) denotes the smallest eigenvalue of Ω, then the sequence (Sk) achieves the monotone decrease
property

J(Sk+1) ≤ J(Sk), k ∈ N (5.4)

for the potential function (2.46).

Proof. Appendix A.3.

Recent work [ZZS21] on the convergence of (2.38a) showed that, up to negligible situations that cannot
occur when working with real data, limit points S∗ = limt→∞ S(t) of (2.38a) are integral assignments
S∗ ∈ W . Proposition 5.1 says that for stepsizes h < 1 the geometric integration step (5.1) yields a descent
direction for moving S(t) ∈ W to S(t+ h) ∈ W and therefore sufficiently approximates the integral curve
corresponding to (2.38a) at time t + h. We conclude that the fixed point determined by Algorithm 1 listed
below solves the nonlocal G-PDE (3.7).
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Algorithm 1: Geometric DC-Programming Scheme.
1 Initialization: γ > |λmin(Ω)| (DC-decomposition parameter, see proof Proposition 5.1)
2 S0 = S(0) ∈ W (initial point by (2.38a))
3 ε > 0 (termination threshold)
4 ε0 = ‖ gradg J(S0)‖ (gradg J(S) = RS(∂SJ(S)))
5 k = 0

6 while εk > ε do
7 S̃k = ΩSk + γ logSk

8 compute: Sk+1 = argminS∈W{γS logS − 〈S̃k, S〉} given by (5.1) resp. (5.2) with h = 1
γ

9 εk = ‖ gradg J(Sk+1)‖
10 k ← k + 1

5.2. Higher-Order Geometric Integration. In this section we show how higher-order geometric integra-
tion schemes can be used and enhance the first-order method of the previous section.

We continue the discussion of the numerical integration of the assignment flow (2.38a) by employing
the tangent space parameterization (3.10). For a discussion of relations to the geometry of W , we refer to
[ZSPS20]. In what follows, we drop the argument x ∈ V and just work with matrix products – cf. (2.48) –
besides the lifting map expS that acts row-wise as defined by (2.40).

Our starting point is the explicit geometric Euler scheme (3.19) and (5.1), respectively,

S(t+ h) ≈ expS0

(
V (t) + hV̇ (t)

)
= expS(t)

(
h(ΩS)(t)

)
. (5.5)

Now compute the second-order derivative of all component functions on T0

V̈ (t)
(3.13)
= Π0Ω

d

dt
expS0

(
V (t)

) (3.10)
(3.12)
= Π0ΩRexpS0 (V (t))V̇ (t)

(3.10)
= Π0ΩRS(t)

(
ΩS(t)

)
. (5.6)

Then the second-order expansion V (t+h) = V (t)+hV̇ (t)+ h2

2 V̈ (t)+O(h3) in T0 leads to the second-order
geometric integration scheme

S(t+ h) ≈ expS(t)

(
hV̇ (t) +

h2

2
V̈ (t)

)
(5.7a)

= expS(t)

(
hΩS(t) +

h2

2
ΩRS(t)(ΩS(t))

)
, (5.7b)

which may be read due to (2.44a) as the two-stage iterative algorithm

S̃(t) = expS(t)

(
hΩS(t)

)
, (5.8a)

S(t+ h) = exp
S̃(t)

(h2

2
ΩRS(t)(ΩS(t))

)
. (5.8b)

Below, we set in view of (3.10)

J(V ) := J(S)|S=expS0 (V ) = J
(

expS0(V )
)

(5.9)

to simplify the notation. The following lemma prepares our main result.

Lemma 5.2. Based on the parametrization (3.10), the Euclidean gradient of the function V 7→ J(V ) is
given by

∂J(V ) = −RexpS0 (V )

(
Ω expS0(V )

)
= gradg J(S), (5.10)

that is by the Riemannian gradient of the potential (2.46).
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Proof. Appendix A.4.

The next proposition asserts that applying the second-order geometric integration scheme (5.8) leads to
a sufficient decrease of the sequence of values (J(Sk))k∈N, if at each iteration the step sizes are chosen
according to a Wolfe rule like line search procedure [DY99, NW06]. Specifically, the step sizes h and h2

in (5.8a) and (5.8b), respectively, are replaced by step size sequences (θk)k≥0 and (hkθk)k≥0. In addition,
the proposition reveals that, under mild assumptions on the sequence (hk)k≥0, the norm of the Riemannian
gradient (5.10) becomes arbitrarily small. The proposition is proved in Appendix A.4.

Proposition 5.3. Let Ω(x, y) be as in Lemma 3.1 and let d :W × R+ → T0 be a mapping given by

d(S, h) = Π0

(
ΩS +

h

2
ΩRS(ΩS)

)
, S ∈ W, h ∈ R+. (5.11)

Then the following holds:
(i) There exist sequences (hk)k≥0, (θk)k≥0 and constants 0 < c1 < c2 < 1 such that setting

Sk+ 1
2 = expSk(θkΩS

k), (5.12a)

Sk+1 = exp
Sk+ 1

2

(hkθk
2

ΩRSk(ΩSk)
)
, (5.12b)

and
dk := d(Sk, hk) ∈ T0 (5.13)

yields iterates
Sk+1 = expSk(θkd

k), k ∈ N (5.14)
satisfying

J(Sk+1)− J(Sk) ≤ c1θk〈gradg J(Sk), RSk(dk)〉Sk , (Armijo condition) (5.15a)

|〈gradg J(Sk+1), RSk(dk)〉Sk | ≤ c2|〈gradg J(Sk), RSk(dk)〉Sk |, (curvature condition) (5.15b)

and (recall (2.22))

〈U, V 〉S =
∑
x∈V

gS(x)

(
U(x), V (x)

)
, U, V ∈ T0, S ∈ W. (5.16)

(ii) Suppose the limit point γ∗ of (θk)k≥0 is bounded away from zero, i.e. γ∗ = lim
k→∞

θk > 0. Then any

limit point S∗ ∈ W of the sequence (5.12) is an equilibrium of the flow (2.38a).
(iii) If S∗ is a limit point of (5.12) which locally minimizes J(S), with sequences (θk)k≥0, (hk)k≥0 as in

(ii), then S∗ ∈ W \W .
(iv) If additionally

∑
k≥0 hk = 0 holds in (ii), then the sequence (εk)k≥0 with εk := ‖gradgJ(Sk)‖ is a

zero sequence.

Proof. Appendix A.4.

Given a state Sk ∈ W , Proposition 5.3 asserts the existence of step size sequences (hk)k≥0, (θk)k≥0 ⊂ R+

that guarantee a sufficient decrease of the objective (2.46) through (5.14) while still remaining numerically
efficient by avoiding too small step sizes through (5.15). A corresponding proper stepsize selection pro-
cedure is summarized as Algorithm 3 that calls Algorithm 2 as a subroutine. Based on Algorithm 3, the
two-stage geometric integration scheme (5.8) that accelerates Algorithm 1 is listed as Algorithm 4. Accel-
eration is accomplished by utilizing at each Sk descent directions dk given by (5.13), based on second-order
information provided by the vector field (5.6).

In Section 6, we show that Algorithm 4 converges. This implies, in particular, that Algorithm 1 and
Algorithm 4 terminate after a finite number of steps for any termination parameter ε with respect to the



28 D. SITENKO, B. BOLL, C. SCHNÖRR

Algorithm 2: Search (Sk, θk, dk, c1, c2, a, b).

1 Input: current iterate: Sk ∈ W , initial step size θk > 0,
2 descent direction dk with 〈gradgJ(Sk), RSkdk〉Sk < 0,
3 k = 1.
4 repeat
5 Sk+1 = expSk(θkd

k)

6 if J(Sk+1)− J(Sk) > θkc1〈gradgJ(Sk), RSkdk〉Sk then
7 a = a, b = θk

8 else
9 if |〈gradgJ(Sk+1), RSkdk〉Sk | ≤ |c2〈gradgJ(Sk), RSkdk〉Sk | then

10 stop

11 a = θk, b = b, θk+1 = a+b
2 .

12 k ← k + 1.

13 until θk satisfies (5.15);
14 Return: Sk, θk

Algorithm 3: Step (Sk, θk, dk, c1, c2, λmin(Ω)).

1 Input: current iterate: Sk ∈ W , initial step size θk > 0,
2 descent direction dk with 〈gradgJ(Sk), RSkdk〉Sk < 0,
3 smallest eigenvalue of Ω, λmin(Ω) c1, c2 ∈ (0, 1) with c2 ∈ (c1, 1),
4 initial search interval: a1 = θk, b1 = 1

|λmin(Ω)| with a1 < b1,
5 k = 1.
6 repeat
7 θk = ak+bk

2 , Sk+1 = expSk(θkdk),
8 if J(Sk+1)− J(Sk) > θkc1〈gradgJ(Sk), RSkdk〉Sk then
9 Sk+1, θk+1 ← Search(Sk, θk, c1, c2, ak, bk) (Algorithm 2), stop

10 else
11 if |〈gradgJ(Sk+1), RSkdk〉Sk | ≤ |c2〈gradgJ(Sk), RSkdk〉Sk | then
12 stop
13 else
14 ak+1 = θk+1, bk+1 = bk.

15 k ← k + 1.

16 until θk satisfies (5.15a);
17 Return: Sk

entropy of the assignment vectors, which measures closeness to an integral solution. Theorem 6.6 asserts the
existence of basins of attraction around integral solutions from which the sequence (Sk) can never escape
once it has reached such a region.
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We elaborate in terms of Theorem 6.4 a theoretical guideline for choosing a sequence (hk)k≥0 which
meets the condition of Proposition 5.3 (iv). In practice, to achieve an acceleration by Algorithm 4 in com-
parison with Algorithm 1, we choose a large value of the step size parameter hk in the beginning and mono-
tonically decrease hk to zero after a fixed number of iterations. One particular step size selection strategy
that we used for the numerical experiments will be highlighted in Section 7.

Algorithm 4: Accelerated Geometric DC Optimization
1 Initialization: (DC-decomposition parameter, see the proof of Prop. 5.1),
2 S0 = S(0) ∈ W , (initial iterate (2.38a)),
3 ε > 0, (termination threshold),
4 λmin(Ω), (smallest eigenvalue of Ω),
5 c1, c2 ∈ (0, 1), (cf. Prop. 5.3),
6 ε0 = ‖gradgJ(S0)‖, θ0 = 1

γ (cf. (A.10))
7 k = 0.
8 while εk > ε do

9 Choose: hk ∈
(

0,
‖R

Sk
(ΩSk)‖2

Sk

|〈R
Sk

(ΩSk),ΩR
Sk

(ΩSk)〉|

)
10 dk = Π0ΩSk + hk

2 ΩRSk(ΩSk) (descent direction by (5.13),(5.11))
11 if θk satisfies (5.15) then
12 Set: S̃k = 1

θk
log(S

k

1c
) + dk

13 Compute: Sk+1 = argminS∈W{
1
θk
S logS − 〈S̃k, S〉}, by

14 Sk+1 = expSk(θkd
k)

15 else
16 Sk+1 ← Step

(
Sk, θk, dk, c1, c2, λmin(Ω)

)
by Algorithm 3.

17 εk+1 = ‖gradgJ(Sk+1)‖,
18 k ← k + 1.

19 Returns: Sk ≈ S∗

The following remark clarifies how the line search procedure formulated as Algorithm 3, that is used
in Algorithm 4, differs from the common line search accelerated DC-programming schemes proposed by
[FM81] and [AFV18].

Remark 5.4 (directly related work). Using the notation of Proposition 5.1 and its proof, the step iterated
by Algorithm 1 at Sk ∈ W reads

S̃k = argminS∈Rn

{
h∗(S)− 〈Sk, S〉

}
, with h(S) = 〈S,ΩS〉+ γS logS, (5.17a)

Sk+1 = argminS∈Rn

{
g(S)− 〈S, S̃k〉

}
, with g(S) = δW(S) + γS logS, (5.17b)

where h∗ is the conjugate of the convex function h. Motivated by the work [FM81], Aragón et al. [AFV18]
proposed an accelerated version of the above scheme by performing an additional line search step along the
descent direction

d̃k = Sk+1 − Sk (5.18)

in (5.17b) for scenarios, where the primary variable S to be determined is not manifold-valued.
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The direct comparison with Algorithm 1 reveals that for the specific choice hk = 0, k ∈ N in (5.13),
(5.11), line search is performed along the descent direction

dk = Π0ΩSk = V k+1 − V k ∈ T0, (5.19)

where the last equation follows from applying the parametrization (3.10) to (5.12) while taking into account
(2.41) and RS = RSΠ0 for S ∈ W .

Comparing d̃k and dk shows the geometric nature of our algorithm in order to handle properly the
manifold-valued variable S and the more general descent directions dk with step sizes hk > 0 in Algo-
rithm 4.

5.3. Influence of Nonlocal Boundary Conditions. We conclude this section by explaining in more detail
the effect of imposing in (3.7) the zero nonlocal boundary condition on the nonempty interaction domain,
on the stepsize selection procedure presented as Algorithm 3. This explanation is formulated as Remark 5.6
below after the following proposition, that states a result analogous to [AVMRTM10, Proposition 2.3]. The
proposition is proved in Appendix A.5.

Proposition 5.5. For mappings Θ, α ∈ FV×V , let Ω ∈ FV×V and λ ∈ FV be given as in Lemma 3.1 such
that property (2.34) holds and λ = 1, x ∈ V in (3.5) is achieved. Assume further that the weighted graph
(V, E ,Ω) in (2.1) is connected. Then the following holds:

(i) The smallest Dirichlet eigenvalue of the nonlocal operator (2.17)

λD1 = inf
f 6=0
−

1
2〈f,D

α(ΘGαf)〉V
〈f, f〉V

, f ∈ FV , f|VαI = 0, (5.20)

is bounded away from zero and admits the equivalent expression

0 < λD1 = inf
f 6=0

〈f, (Λ− Ω)f〉V
〈f, f〉V

, (5.21)

where
Λ = Diag(λ), λ = (. . . , λ(x), . . . )> (5.22)

with λ(x) given by (3.5).
(ii) One has λmin(Ω) > −1.

Proof. Appendix A.5.

We are now in the position to characterize the effect of imposing the zero nonlocal boundary condition on
the step size selection procedure (Algorithm 3).

Remark 5.6 (parameter selection). Recalling the proof of Proposition 5.1, the update (5.2) amounts to
perform at each step k ∈ N one iteration of a basic DC programming scheme [HAPD05] with respect to the
suitable DC decomposition (A.10) of (2.46), with Ω satisfying (2.2), (2.34) by choosing parameter γ > 0
such that λmin

(
Ω + γDiag( 1

S )
)
> 0. In the case of a nonzero interaction domain (2.8) with Ω, α,Θ as in

Lemma 5.5, Proposition 5.5(ii) and estimate (A.13) yield for S ∈ W

λmin

(
Ω + γDiag

( 1
S

))
> −1 + β + γ > 0 for γ > 1− β, (5.23a)

β =
∑
x∈Vb

∑
y∈VαI

Θ(x, y)α2(x, y)f2(x). (5.23b)

In particular, following the steps in proof of Lemma 5.1, relation h = 1
γ in connection with (5.23) accounts

for bigger step sizes in Algorithm 1 for integrating (3.7) with nonzero interaction domain (2.8). This will be
numerically validated in Section 7 (see Figure 7.1).
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We conclude this section with a final comment on the lower bound of the objective (2.46).

Remark 5.7. (global minimizer of (2.46)) Recalling the terms involved in the objective (2.46), the lower
bound is attained precisely when the first term

∑
x∈V

∑
y∈N (x) Ω(x, y)‖S(x) − S(y)‖2 is minimal and the

last term −1
2‖S‖

2
F is maximal. Therefore the global minimizers of J(S) are given by the set of spatially

constant assignments, where to each node in graph V the same prototype X∗j ∈ X is assigned.

6. CONVERGENCE ANALYSIS

This section is devoted to the convergence analysis of Algorithm 4 that performs accelerated geometric
integration of the Riemannian descent flow (2.38a). The main results are stated as Theorem 6.4 and Theorem
6.6 in Section 6.2. The lenghty proofs have been relegated to Appendix A.6.

6.1. Preparatory Lemmata.

Lemma 6.1. For a nonnegative, symmetric mapping Ω ∈ FV×V , let the sequences (Sk)k≥0, (θk)k≥0, (hk)k≥0

be recursively defined by Algorithm 4 and let Λ denote the set of all limit points of the sequence (Sk)k≥0,

Λ = {S ∈ W : ∃(Skl)l≥0 with Skl → S for l→∞}. (6.1)

Then there exists J∗ ∈ R with lim
k→∞

J(Sk) = J∗, i.e. J(S) is constant on Λ.

Proof. Appendix A.6.

Next, we inspect the behavior of the iterates generated by Algorithm 4 near a limit point S∗ ∈W . To this
end, the following index sets are considered at each node x ∈ V:

J+(S∗(x)) = {j ∈ [c] : (ΩS∗)j(x)− 〈S∗(x), (ΩS∗)(x)〉 < 0}, (6.2a)

J−(S∗(x)) = {j ∈ [c] : (ΩS∗)j(x)− 〈S∗(x), (ΩS∗)(x)〉 > 0}, (6.2b)

J0(S∗(x)) = {j ∈ [c] : (ΩS∗)j(x)− 〈S∗(x), (ΩS∗)(x)〉 = 0}. (6.2c)

Lemma 6.2. Let Ω ∈ FV×V and (Sk)k≥0, (θk)k≥0, (hk)k≥0 be as in Proposition 5.3 (iv) with a sequence
(θk)k≥0 bounded by θk ∈ [θmin, θmax]. Let S∗ ∈ W be a limit point of (Sk)k≥0. Then, for the positive
function Q(S) =

∑
x∈V

∑
j∈J+(S∗(x))

Sj(x), there are constants ε > 0, M∗ > 1 and an index k0 such that for

all k ≥ k0 with ‖S∗ − Sk‖ < ε the inequality

Q(Sk+1)−Q(Sk) <
θk
M∗

∑
x∈V

∑
j∈J+(S∗(x))

Skj (x)((ΩS∗)j(x)− 〈ΩS∗(x), S∗(x)〉) < 0 (6.3)

is satisfied.

Proof. Appendix A.6.

6.2. Main Results. This section provides the main results of our convergence analysis: convergence of the
accelerated Algorithm 4 (Theorem 6.4) and an estimate of the basins of attraction around equilibria that
enable early stopping of Algorithm 4 (Theorem 6.6).

Definition 6.3 (convex functions of Legendre type [Roc70, Chapter 26]). Let f : X → (−∞,∞] be a
lower-semicontinuous proper convex function with nonempty open domain C = int(domf) 6= ∅. Then f is
called

(i) essentially smooth, if f is differentiable on C and for every sequence (xk)k∈N ⊂ C with xk → x∗ ∈
C \ C converging to a boundary point for k →∞, it follows ‖∇f(xk)‖ → ∞;

(ii) Legendre type function, if h is essentially smooth and strictly convex on C.
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Convex functions f of Legendre type yield a class of Bregman divergence functions Df through

Df : C × C → R+,

(x, y) 7→ f(x)− f(y)− 〈∇f(y), x− y〉,
(6.4)

see, e.g., [Bre67, BB97] for a detailed exposition. Strict convexity of f and Jensen’s inequality imply

∀(x, y) ∈ C × C : Df (x, y) ≥ 0 and (Df (x, y) = 0) ⇔ (x = y). (6.5)

In the following, we will use the Kullback-Leibler (KL) divergence (a.k.a. relative entropy, information
divergence) DKL = Df ,

DKL : S × S → R+, DKL(s, p) =
〈
s, log

s

p

〉
, (6.6)

induced by the negative discrete entropy function

f = 〈s, log s〉+ δS(s) (6.7)

(with the convention 0 · log 0 = 0). Accordingly, we define with abuse of notation

DKL : W ×W → R+, DKL(S, P ) =
∑
x∈V

DKL

(
S(x), P (x)

)
. (6.8)

Theorem 6.4 (convergence of Algorithm 4). Let (Sk)k≥0 be a sequence generated by Algorithm 4, where
the sequences of step sizes (θk)k≥0, (hk)k≥0 additionally satisfy the assumptions of Lemma 6.2 and Propo-
sition 5.3, respectively. If there exists an index K ∈ N such that the sequence (hk)k≥K satisfies

hk ≤ C(Ω)
‖gradgJ(Sk)‖2

Sk

n
(6.9a)

with C(Ω) := 2
θminc1

λ2(Ω)
, λ(Ω) = max{|λmin(Ω)|, |λmax|(Ω)}, (6.9b)

then the set Λ = {S∗} defined by (6.1) is a singleton and limk→∞DKL(S∗, Sk) = 0 holds, i.e. the sequence
(Sk)k≥0 converges to a unique S∗ ∈ W which is an equilibrium of (2.38a).

Proof. Appendix A.7.

According to Proposition 5.3 (iii),(iv) the sequence (Sk)k≥0 converges to a critical point S∗ ∈ W \ W
on the boundary of convex set W . Since both functions g, h of the DC-decomposition (A.10) have been
regularized by the negative entropy, global Lipschitz continuity of the derivatives does not hold and hence
does not allow to study the convergence rate of Algorithm 4 along the lines pursued in [AFV18], [BSTV18],
[PLT18]. Therefore, we confine ourselves to establish a local linear rate of convergence Sk → S∗ within a
suitably define basin of attraction inW around S∗. To this end, we adopt the following basic

Assumption: Any stationary point S∗ ∈ W of the sequence (Sk) generated by Algorithm 4 is a stable
equilibrium of the flow (2.38a):

(ΩS∗)j(x)− (ΩS∗)j∗(x)(x) < 0, j ∈ [c] \ j∗(x) = argmaxl∈[c] S
∗
l (x), ∀x ∈ V. (6.10)

Remark 6.5. As worked out in [ZZS21, Section 2.3.2], the set of initial points S(0) of the flow (2.38a) for
which Assumption (6.10) is not satisfied has measure zero. Hence Assumption (6.10) holds in all practically
relevant cases.

Based on Assumption 6.10, we adopt the results reported in [ZZS21, Section 2.3.3] by defining the open
convex polytope for each integral equilibrium S∗ ∈ W∗ as

A(S∗) :=
⋂
x∈V

⋂
j 6=j∗(x)

{S ∈ FRn×c : (ΩS)j(x) < (ΩS)j∗(x)(x)}, (6.11)
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and by introducing the basins of attraction

Bε(S
∗) := {S ∈W : max

x∈V
‖S(x)− S∗(x)‖1 < ε} ⊂ A(S∗) ∩W, (6.12)

where ε > 0 is small enough such that the inclusion in (6.12) holds. Due to [ZZS21, Proposition 2.3.13] a
sufficient upper bound ε ≤ ε∗ for the inclusion (6.12) to hold is

ε∗ = min
x∈V

min
j∈[c]\j∗(x)

2
(
(ΩS∗)j∗(x) − (ΩS∗)j

)
(x)∑

y∈N (x)

Ω(x, y) +
(
(ΩS∗)j∗(x) − (ΩS∗)j

)
(x)

> 0. (6.13)

The following theorem asserts that a modified criterium applies to the sequence generated by Algorithm 4,
together with a linear convergence rate Sk → S∗, whenever the sequence (Sk) enters a basin on attraction
Bε(S

∗).

Theorem 6.6 (basins of attraction). For Ω ∈ FV×V as in Lemma 3.1, let (Sk)k≥0 be a sequence generated
by Algorithm 4. Let S∗ ∈ W be a limiting point (Sk)k≥0 that fulfills Assumption 6.10 and let ε∗ > 0 be as
in (6.13). Then, introducing the positive constants

h = max
k∈N

hk, ρ∗ = max
S∈W

(
max
x∈V,

j∈[c]\j∗(x)

(
(ΩS)j∗(x) − (ΩS)j

)
(x)
)
, N = max

y∈V
|N (y)|, (6.14)

for all ε > 0 small enough such that

ε ≤ min
x∈V

min
j∈[c]\j∗(x)

2 ·
(
(ΩS∗)j∗(x) − (ΩS∗)j

)
(x)

1 + C · ρ∗ +
(
(ΩS∗)j∗(x) − (ΩS∗)j

)
(x)

, C = h · c ·N, (6.15)

the following applies: If for some index k0 ∈ N it holds that Sk0 ∈ Bε(S∗) ⊂ Bε∗(S
∗), then for all k ≥ k0

there exists a mapping ξ ∈ FV with ξ(x) ∈ (0, 1), ∀x ∈ V , such that

‖Sk(x)− S∗(x)‖1 < ξk−k0(x)‖Sk0(x)− S∗(x)‖1, ∀x ∈ V. (6.16)

Proof. See Appendix A.7.

7. EXPERIMENTS AND DISCUSSION

In this section, we report numerical results obtained with the algorithms introduced in Section 5. Details
of the implementation and parameters settings are provided in Section 7.1. Section 7.2 deals with the impact
of the nonlocal boundary conditions of system (3.14) on properties of averaging matrices Ω (see Section 3),
and how this effects the selection of the step size parameter h > 0 in Algorithm 1. Section 7.3 reports results
obtained by computing the assignment flow with Algorithm 1 and different constant step sizes h > 0 using
the nonlocal G-PDE parametrization (3.14). In addition, we studied numerical consequences of nonlocal
boundary conditions (3.7b), (3.7c) using the maximal allowable step size (5.3) according to Proposition
5.1. Finally, in Section 7.4, we compare Algorithm 1 and the accelerated Algorithm 4 by evaluating their
respective convergence rates to an integral solution of the assignment flow corresponding to a stationary
point of the potential (2.46), for various nonlocal connectivities.

7.1. Implementation Details. All evaluations were performed using the noisy image data depicted by Fig-
ure 3.1 (b). System (3.7) was initialized by S0 = L(1W) ∈ W with ρ = 1, as specified by (2.29). Since the
iterates (Sk) converge in all cases to integral solutions which are located at vertices on the boundary ∂W of
W , whereas the numerics is designed for evolutions onW , we applied the renormalization routine adopted
in [ÅPSS17, Section 3.3.1] with ε = 10−10 whenever the sequence (Sk)k≥0 came that close to ∂W on its
path to the vertex.
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FIGURE 7.1. Effect of imposing nonlocal boundary conditions. The green ( ) and the red ( ) curves plot the
smallest eigenvalues λmin(Ω) of the parameter matrix (3.3) for uniform and nonuniform averaging, respectively,
and for different neighborhood sizes |N |. Choosing larger neighborhoods (2.3) increases the smallest eigen-
value and consequently, by (5.3), enables to choose bigger step sizes in Algorithm 1 that achieve the monotone
decrease property (5.4).

The averaging matrix Ω was assembled in two ways as specified in Section 3.4.2 as items (i) and (ii), called
uniform and nonuniform averaging in this section. In the latter case, the parameter values σs = 1, σp = 5 in
were chosen (3.21), as for the experiments reported in Section 3.4.2. The iterative algorithms were terminated
at step k when the averaged gradient norm

εk =
1

n

∑
x∈V
‖RSk(x)(ΩS

k(x))‖ ≤ ε (7.1)

reached a threshold ε which when chosen sufficiently small to satisfy bound (6.15) that guarantees a linear
convergence rate as specified in Theorem 6.6.

We point out that during the evaluation and discussion of realized experiments our focus was not on
assessing a comparison of computational speed in term of absolute runtimes, but on the numerical behavior
of the proposed schemes with regard to number of iterations required to solve system (3.14) and in terms
of the labeling performance. Thus, we did not confine ourselves to impose any restriction on the minimum
time step size and the maximum number of iterations and instead appropriately adjusted the parameter (7.1)
to stop the algorithm when a stationary point at the boundary ofW was reached.

Since S∗ is unknown, we can not directly access the exact bound in (6.15) beforehand and therefore it
is not evident how to set ε in practice. However, based on experimental evidence, setting the termination
threshold by ε = 10−7 in (7.1) serves as good estimate, see Figures 7.5 and 7.7. Algorithm 3 requires to
specify two parameters c1, c2 (see line 3). We empirically found that using c1 = 0.4, c2 = 0.95 is a good
choice that we used in all experiments.

7.2. Step Size Selection. This section reports results of several experiments that highlight aspects of im-
posing nonlocal boundary conditions (3.7b), (3.7c) and their influence on the selection of step sizes in Algo-
rithms 1 and 4.

To demonstrate these effects we used two different parameter matrices Ω defined in accordance with
Lemma 3.1, with Θ, α given as in Section 3.4.2, called uniform and nonuniform averaging, respectively. To
access the maximal bound (5.3) for the step size h > 0, as derived in Proposition 5.1 in order to achieve the
monotone decrease property (5.4), we directly approximated the exact smallest eigenvalue λmin(Ω) using
available software [LCC98].
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FIGURE 7.2. Effects of selecting the step size h in Algorithm 1 for various neighborhood sizes |N |. Dashed ver-
tical lines indicate the step size upper bound 1

|λmin(Ω)| that guarantees the monotone decrease property (Propo-
sition 5.1). Left: Number of iterations required to satisfy the termination criterion (7.1). Larger step sizes
decrease the number of iterations but yield unreliable numerical computation when h exceeds the upper bound
(see text). Right: Pixel-wise labeling error compared to ground truth. Labeling accuracy quickly deteriorates
when h exceeds the upper bound.

Figure 7.1 displays values of the smallest eigenvalue for uniform and nonuniform averaging, respectively,
and different sizes of the nonlocal neighborhoods (2.3): Increasing the size |N | decreases the value of
λmin(Ω) and consequently, by virtue of relation h ≥ 1

|λmin(Ω)| in Proposition 5.1, to a larger upper bound for
setting the step size h in Algorithm 1. This confirms our observation and statement formulated as Remark
5.6.

In practice, however, it is too expensive to compute λmin numerically for choosing the step size h. Figure
7.2 shows for three sizes of neighborhoods |N | and for step sizes h smaller and larger than the upper bound
(5.3) indicated by dashed vertical lines,

(i) the number of iterations required to reach the termination criterion (7.1) (Figure 7.2, left panel);
(ii) the labeling accuracy compared to ground truth (Figure 7.2, right panel).

The results show that the bound (5.3) should be considered as a hard constraint indeed: Increasing the step
size h up to this bound (cf. Fig. 7.2, left panel) decreases the required number of iterations, as to be expected.
But exceeding the bound yields unreliable computation, possibly caused by a too small DC decomposition
parameter γ < |λmin(Ω)| which compromises the convexity and hence convergence of the auxiliary opti-
mization problems in Algorithm 1, line (8)). Likewise, Fig. 7.2, right panel, shows that labelings quickly
become inaccurate once the step size exceeds the upper bound. Figure 7.3 visualizes examples.

Overall, these results show that a wide range of save choices of the step size parameter h exists, and that
choosing the “best” value depends on how accurate λmin(Ω) is known beforehand.

.

7.3. First-Order Optimization. This section is devoted to the evaluation of Algorithm 1. We examine
how effectively this algorithm converges to an integral solution (labeling) for both uniform and nonuniform
averaging, for different sizes of nonlocal neighborhoods |N |, and for different admissible step sizes h based

1The plotted curves in the figure illustrate progressing objective values of J(S) stagnating near a local minimizer S∗. In partic-
ular, the depicted stagnating value is not the lower bound of J(S) onW that is given by J(S∗) = − |V|

2
and attained at the global

minimizer S∗, that is always a constant labeling and therefore of no interest, see Remark 5.7



36 D. SITENKO, B. BOLL, C. SCHNÖRR

h = 1 h = 10 h = 25h = 0.5

h = 1 h = 10 h = 25h = 0.5h = 1 h = 10 h = 25h = 0.5 h = 1 h = 10 h = 25h = 0.5

FIGURE 7.3. Visualization of regularization impacts when increasing the step size h corresponding to the re-
sults in Figure 7.2. Labeling results for various step sizes and the neighborhood size |N | = 9×9. Conforming to
Figure 7.2, right panel, labeling accuracy quickly deteriorates once h exceeds the upper bound (5.3) (rightmost
panel).

|N | = 3× 3 |N | = 7× 7 |N | = 15× 15

U
ni

fo
rm

N
on

un
ifo

rm

|N | = 3× 3 |N | = 5× 5 |N | = 9× 9

0 20 40 60 80 100 120 140 160

−3

−2,5

−2

−1,5

−1

−0,5

0

·104

Number of iterations

O
bj

ec
tiv

e
va

lu
e

(2
.4

6)

h1 = 0.5

h2 = 1.5

h3 = 3

0 20 40 60 80 100

−3

−2,5

−2

−1,5

−1

−0,5

0

·104

Number of iterations

h1 = 1.5

h2 = 3

h3 = 4.3

0 10 20 30 40 50 60 70

−2,5

−2

−1,5

−1

−0,5

0

·104

Number of iterations

h1 = 3

h2 = 4

h3 = 4.7

0 20 40 60 80 100 120 140 160

−3

−2,5

−2

−1,5

−1

−0,5

0

·104

Number of iterations

O
bj

ec
tiv

e
va

lu
e

(2
.4

6)

h1 = 0.5

h2 = 1.5

h3 = 3

0 10 20 30 40 50 60

−3

−2,5

−2

−1,5

−1

−0,5

0

·104

Number of iterations

h1 = 2

h2 = 4

h3 = 5

0 10 20 30 40 50 60

−3

−2,5

−2

−1,5

−1

−0,5

0

·104

Number of iterations

h1 = 2

h2 = 5

h3 = 10

FIGURE 7.4. Minimization of the nonconvex potential (2.46) by Algorithm 1 for various neigborhood sizes
|N |, for uniform averaging (top row) and nonuniform averaging (bottom row), and for three constant step sizes
0 < h1 < h2 < h3, where in each experiment h3 was chosen smaller than the upper bound discussed in Section
7.2 that guarantees a monotonously decreasing sequence of potential values (Proposition 5.1). All experiments
illustrate this property and that the largest admissible step size h3 is most effective. 1
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FIGURE 7.5. Norm convergence of the sequence generated by Algorithm 1 towards an integral solution (label-
ing). Once the basin of attraction of the integral solution has been reached (Theorem 6.6), the convergence rate
increases considerably.

on the insights gained in Section 7.2: the largest admissible step size increases with the neighborhood size
|N | and when using nonuniform, rather than uniform, averaging.

Figure 7.4 displays the corresponding values of the objective function (2.46) as a function of the iteration
counter. We observe that this first-order algorithm minimizes quite effectively the non-convex objective
function during the first few dozens of iterations.

Figure 7.5 displays the same information, this time in term of the function k 7→ 1
n‖S

k − S∗‖1, however.
We observe two basic facts: (i) Due to using admissible step sizes, the sequences (Sk)k≥0 always converge
to the integral solution S∗. (ii) In agreement with Theorem 6.6, the order of convergence increases whenever
the sequence (Sk)k≥0 reaches the basin of attraction.

7.4. Accelerated Geometric Optimization. In this section, we report the evaluation of Algorithm 4 using
Algorithm 1 as baseline. The main ingredients of Algorithm 4 are:

(i) The descent direction dk given by (5.11) exploits the second-order term 1
2ΩRSk(ΩSk) weighted by

parameter hk which, according to line 9 of Algorithm 4, is determined with negligible additional com-
putational cost by

hk = τ ·
( ‖RSk(ΩSk)‖2

Sk

|〈RSk(ΩSk),ΩRSk(ΩSk)〉|

)
, τ ∈ (0, 1). (7.2)

Choosing the parameter τ is a compromise between making larger steps (large value of τ ) and accuracy
of labeling (small value of τ ). According to our experience, τ = 0.1 is a reasonable choice that did
never compromise labeling accuracy. This value was chosen for all experiments discussed in this
section.
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FIGURE 7.6. Fraction of inner loops of Algorithm 4 based on condition (5.15a) that also satisfied condition
(5.15b) ({ } = True) or not ({ } = False), with initialization θ0 = 0.5 and uniform averaging (left panel) or
nonuniform averaging (right panel). Up to a tiny fraction, condition (5.15b) is satisfied which justifies to reduce
the computational costs of the inner loop by only checking condition (5.15a) and dispensing with condition
(5.15b) after Kmax iterations.

(ii) Algorithm 4 calls Algorithm 3 which in turn calls Algorithm 2 in order to satisfy both conditions (5.15)
for sufficient decrease. In order to reduce the computational costs of the inner loop started in line 16 of
Algorithm 4, we only checked the conditions (5.15a) and (5.15b) at each iteration up to Kmax = 100
iterations. Figure 7.6 illustrates that, while condition (5.15a) is satisfied throughout all outer loop
iterations, condition (5.15b) is satisfied too except for a tiny fraction of inner loops, and therefore the
validity of (5.15) is still guaranteed up to a negligible part of iteration steps.

Parameter θk of Algorithm 4 corresponds to the step size parameter hk of Algorithm 4. According to the
discussion of proper choices of hk in Section 7.2, parameters θk was initialized by values θ0 ∈ {1

2 , 2} and
the adaptive search of θk was not allowed to exceed the upper bound θmax = 10.

Like Algorithm 1, Algorithm 4 terminated when condition (7.1) was satisfied with ε = 10−7.

Figure 7.7 illustrates the convergence of Algorithms 1 and 4 towards labelings for the two initial step
sizes θ0 ∈ {1

2 , 2} corresponding to the fixed step size h ∈ {1
2 , 2} of Algorithm 1), and for different sizes

|N | of neighborhoods with nonuniform averaging. Throughout all experiments, we observed that due to
using adaptive step sizes θk and second-order information for determining the search direction, Algorithm 4
terminates after a smaller number of iterations. In particular, the fast convergence of Algorithm 1 within the
basins of attraction is preserved.

Table 2 compares Algorithms 1 and 4 in terms of factors of additional iterations required by Algorithm 1
to terminate. We observe that the efficiency of Algorithm 4 is more pronounced when larger neighborhood
sizes |N | or uniform averaging are used.

8. CONCLUSION AND FUTURE WORK

Conclusion. Using established nonlocal calculus, we devised a novel nonlocal PDE with nonlocal bound-
ary conditions on weighted graphs. Our work adds a novel approach to the literature on PDE-based image
analysis that extends the scope from denoising and inpainting to image labeling. An in-depth discussion
(Section 4) clarified common aspects and differences to related nonlocal approaches from the mathematical
viewpoint. Our work has been motivated by the assignment flow approach [ÅPSS17, Sch20] to metric data
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FIGURE 7.7. Comparison of the convergence of Algorithm 1 ( ) and Algorithm 4 ( ) towards integral solu-
tions (labelings) for various sizes |N | of neighborhoods and nonuniform averaging. For all parameter settings
Algorithm 4 terminates after a smaller number of iterations.

Uniform Nonuniform

|N | Alg. 1 Alg. 4 Acc. Alg. 1 Alg. 4 Acc.

3× 3 828 543 1.52 760 557 1.36
5× 5 1860 697 2.66 726 526 1.38
7× 7 3465 1158 3 961 608 1.58
9× 9 4707 1447 3.25 1123 622 1.81
11× 11 9216 1806 5.10 1402 668 2.1
13× 13 9957 2927 3.40 1510 696 2.17

TABLE 2. Number of iterations required by Algorithms 1 and 4 until convergence to a solution of the nonlocal
PDE (3.7), for uniform and nonuniform averaging and various neighborhood sizes |N |. Columns Acc. list the
additional factor of iterations required by Algorithm 1 relative to Algorithm 4.

labeling which was shown to constitute a special instance of our general approach introduced in this paper.
In particular, our PDE contains the local PDE derived in [SS21] as special case and thus provides a natural
nonlocal generalization.

The second major contribution of our work rest upon the reparametrization introduced in [SS21] that turns
the assignment flow into a Riemannian descent flow with respect to a nonconvex potential. We established in
the present paper two relations to numerical schemes [ZSPS20] for the geometric integration of the assign-
ment flow: (i) Geometric integration can be applied to solve the novel nonlocal PDE. (ii) We showed that
the basic geometric Euler integration scheme corresponds to the basic DC-algorithm of DC programming
[LT18]. Moreover, the geometric viewpoint reveals how second-order information can be used in connection
with line-search in order to accelerate the basic DC-algorithm for nonconvex optimization.
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A range of numerical results were reported in order to illustrate properties of the approach and the theoret-
ical convergence results. This includes, in particular a linear convergence rate whenever a basin of attraction
corresponding to an integral labeling solution is reached, whose existence was establised in [ZZS21].

Future work. The assignment flow approach (2.35) may be considered as a particular “neural ODE” from
the viewpoint of machine learning that generates layers of a deep network by geometric integration of the
flow at discrete points of time. For recent work on learning the parameters from data and on quantifying the
uncertainty of label assignments, respectively, we refer to [HSPS21, ZPS21, ZPS22] and [GAZS21]. In the
present paper, Lemma 3.1 characterizes parametrizations for which the theoretical results hold. Uniform and
data-driven nonuniform parametrizations were used in the experiments to demonstrate broad applicability.
Learning these parameters from data is conceivable but beyond the scope of this paper and hence left for
future work. Generalizations of the scalar-valued mappings Θ, α to tensor-valued mappings are conceivable
as well in order to not only model the interaction across the graph but also the interaction between labels.
For the specific case of classification entire data sets, rather than labeling individual data points, a first step
has been done recently using deep linearized assignment flows [BZPS22].

Finally, we point out recent work [SAS21a, SAS21b] on characterizing assignment flows as critical points
of an action functional, provided the nonlocal mapping which specifies the interaction of label assignments
across the graph satisfies a certain condition. Reconsidering the PDE (1.1) from this viewpoint defines
another problem to be addressed by future work.
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APPENDIX A. PROOFS

A.1. Proofs of Section 3.1.

Proof of Lemma 3.1. In order to show (3.4), we directly compute using assumption (3.2) and the parametriza-
tion (3.3), for any x ∈ V ,∑

y∈V
Ω(x, y)f(y)

(3.3)
=

∑
y∈N (x)

Θ(x, y)α2(x, y)f(y) + Θ(x, x)f(x) (A.1a)

=
∑

y∈N (x)

Θ(x, y)α2(x, y)f(y) + Θ(x, x)f(x) +
(
λ(x)− λ(x)

)
f(x) (A.1b)

https://doi.org/10.1007/s41884-021-00060-8
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(3.5)
=

∑
y∈N (x)

Θ(x, y)α2(x, y)
(
f(y)− f(x)

)
+ λ(x)f(x) (A.1c)

f |VαI =0

= −
∑
y∈V

Θ(x, y)α2(x, y)
(
−
(
f(y)− f(x)

))
+ λ(x)f(x) (A.1d)

(2.13)
= −

∑
y∈V

Θ(x, y)
(
(Dα)∗(f)(x, y)

)
α(x, y) + λ(x)f(x) (A.1e)

=
∑
y∈V

1

2
Θ(x, y)

(
− 2(Dα)∗(f)(x, y)α(x, y)

)
+ λ(x)f(x) (A.1f)

(2.14)
=
∑
y∈V

1

2
Θ(x, y)

(
2Gα(f)(x, y)α(x, y)

)
+ λ(x)f(x) (A.1g)

(2.17)
=

1

2
Dα
(
ΘGα(f)

)
(x) + λ(x)f(x) (A.1h)

which proves (3.4).
Assume that λ(x) ≤ 1 for all x ∈ V . Then, properties (2.2) easily follows from the nonnegativity of

Θ ∈ FV×V and definition (3.5). In addition, if Ω is given by (3.3) and also satisfies (2.34), then equality in
(3.5) is achieved:

1 =
∑
y∈V

Ω(x, y) =
∑
y∈V

Θ(x, y)α2(x, y) + Θ(x, x) = λ(x)−
∑
y∈VαI

Θ(x, y)α2(x, y)

︸ ︷︷ ︸
≥0

≤ λ(x)
(3.5)
≤ 1. (A.2)

�

Proof of Proposition 3.3. Recalling definition (2.39), we directly compute

RS(x,t)

(
(ΩS)(x, t)

)
= RS(x,t)

(∑
y∈V

Ω(x, y)S(y, t)
)

(A.3a)

(3.4)
= RS(x,t)

(1

2
Dα
(
ΘGα(S)

)
(x) + λ(x)S(x)

)
. (A.3b)

�

A.2. Proofs of Section 3.3.

Proof of Proposition 3.4. For brevity, we omit the argument t and simply write S = S(t), V = V (t). Recall
the componentwise operation � defined by (2.30), e.g. (S�V )j(x) = Sj(x)Vj(x) for j ∈ [c], and S2(x) =
(S � S)(x).

Multiplying both sides of (3.15a) with S(x) = expS0(V (x)) and summing over x ∈ V yields∑
x∈V

(
S � V̇

)
j
(x)−

∑
x∈V

1

2

(
S �Dα

(
ΘGα(S)

))
j
(x) =

∑
x∈V

(
λS2

)
j
(x). (A.4)
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Applying Greens nonlocal first identity (2.15) with u(x) = Sj(x) to the second term on the left-hand side
yields with (2.6) ∑

x∈V

(
S � V̇

)
j
(x) +

1

2

∑
x∈V

∑
y∈V

(
Gα(S)� (ΘGα(S))

)
j
(x, y) (A.5a)

+
∑
y∈VαI

Sj(y)Nα
(
ΘGα(Sj)

)
(y) =

∑
x∈V

(
λS2

)
j
(x). (A.5b)

Now, using the parametrization (3.10) of S, we compute at each x ∈ V:

Ṡ(x) =
d

dt
expS0(x)

(
V (x)

)
(A.6a)

(3.11)
=

(
d
dt

(
S0(x)� eV (x)

))
〈S0(x), eV (x)〉 −

(
d
dt〈S

0(x), eV (x)〉
)
S0(x)� eV (x)

〈S0(x), eV (x)〉2
(A.6b)

=
〈S0(x), eV (x)〉(S0 � eV )(x)� V̇ (x)− 〈S0(x)� eV (x), V̇ (x)〉(S0 � eV )(x)

〈S0(x), eV (x)〉2
(A.6c)

= (S � V̇ )(x)− 〈S(x), V̇ (x)〉S(x) (A.6d)
(3.13)
= (S � V̇ )(x)− 〈S(x), (Π0Ω expS0(V ))(x)〉S(x) (A.6e)

(3.17)
= (S � V̇ )(x)− φS(x)S(x). (A.6f)

Solving the last equation for (S � V̇ )(x) and substitution into (A.5) yields after taking the sum over x ∈ V ,
for each Sj = {Sj(x) : x ∈ V}, j ∈ [c]

1

2

d

dt

(∑
x∈V

Sj(x)
)

+
1

2
〈Gα(Sj),ΘGα(Sj)〉V×V +

∑
x∈V

φS(x)Sj(x) (A.7a)

+
∑
y∈VIα

SjNα
(
ΘGα(Sj)

)
(y) =

∑
x∈V

(
λS2

j

)
(x), (A.7b)

which after rearranging the terms is equal to (3.16). �

A.3. Proofs of Section 5.1.

Proof of Proposition 5.1. Equation (5.2) directly follows from Proposition 3.3, from the specification (2.32)
of the similarity mapping and from the relation expp = Expp ◦Rp for p ∈ S (cf. (2.40), (2.41)). Leveraging
the parametrization (3.14) of system (3.7), discretization of (3.14) by forward finite differences with step
size parameter h > 0 yields for x ∈ V

V k+1(x)− V k(x)

h
=
(1

2
Dα
(
ΘGα(expS0(V k))

)
+ λ expS0(V k)

)
(x) (A.8)

which is (5.2) after applying the lifting map (2.41) to V k+1. Consequently, in view of zero nonlocal boundary
conditions, the zero extension of (5.2) to V verifies that Sk is indeed a first order approximation of solution
S(kh) to (3.7).

It remains to show that (5.1) implies (5.4). Adding and subtracting a convex negative entropy term

〈S, logS〉 =
∑
x∈V
〈S(x), logS(x)〉, logS(x) =

(
logS1(x), . . . , logSc(x)

)> (A.9)
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to the potential (2.46), we write with the convex constraint S ∈ W represented by the delta-function δW ,

J(S) = γ〈S, logS〉+ δW (S)︸ ︷︷ ︸
g(S)

−
( 1

2
〈S,ΩS〉+ γ〈S, logS〉︸ ︷︷ ︸

h(S)

)
, γ > |λmin(Ω)|, (A.10)

which is a DC-function [Har59] if γ > |λmin(Ω)|, i.e. both g(S) and h(S) are convex. Indeed, while the
convexity of g is obvious, the convexity of h becomes apparent when inspecting its Hessian. Writing

s = vecr(S) (A.11)

with the row-stacking mapping vecr, we have (⊗ denotes the Kronecker matrix product)

〈S,ΩS〉 = 〈s, (Ω⊗ Ic)s〉 (A.12a)

〈S, logS〉 = 〈s, log s〉, log s = (. . . , log si, . . . )
> (A.12b)

and hence for any v ∈ Rnc with ‖v‖ = 1

d2h(S)(v, v) =
〈
v,
(

(Ω⊗ Ic) + γDiag
(1
s

))
v
〉
> λmin(Ω) + γ, (A.13)

where the last inequality follows from λ ≥ λmin(Ω) for any eigenvalue λ of the symmetric matrix Ω (recall
(2.2), (2.34)), λ(A⊗B) = λi(A)λj(B) for some i, j [Gra81], and λmin(Diag(1

s )) > 1 if S ∈ W .
Thus, if γ > |λmin(Ω)| then h is convex and minimizing (A.10) is a DC-programming problem [HT99,

HAPD05]. Using Fenchel’s inequality −h(Sk) ≤ h∗(S̃) − 〈Sk, S̃〉, ∀S̃, let S̃k minimize at the current
iterate Sk the upper bound

J(Sk) = g(Sk)− h(Sk) ≤ g(Sk) + h∗(S̃)− 〈Sk, S̃〉, ∀S̃ (A.14a)

with respect to S̃, i.e.

0 = ∂h∗(S̃k)− Sk ⇔ S̃k ∈ ∂h(Sk) = ∇h(Sk). (A.14b)

In particular, −h(Sk) = h∗(S̃k)− 〈Sk, S̃k〉 and hence

J(Sk) = g(Sk) + h∗(S̃k)− 〈Sk, S̃k〉. (A.15)

Minimizing in turn the right-hand side with respect to Sk guarantees (5.4) and defines the update Sk+1 by

Sk+1 = arg min
S
{g(S)− 〈S, S̃k〉} ⇔ 0 = ∂g(Sk+1)− S̃k (A.16a)

⇔ γ(logSk+1(x) + 1) + ∂δS
(
Sk+1(x)

) (A.14b)
= ∇h(Sk)(x) (A.16b)

= (ΩSk)(x) + γ(logSk(x) + 1). (A.16c)

Solving for Sk+1(x) yields (5.1) resp. (5.2) with stepsize h = 1
γ < 1 due to γ > |λmin(Ω)|. �

A.4. Proofs of Section 5.2.

Proof of Lemma 5.2. Taking into account the parametrization (3.10), we compute the partial derivative of
(2.46) (recall the operation � defined by (2.30))

∂iJ(V ) = −
〈
Ω expS0(V ), ∂i expS0(V )

〉
(A.17a)

= −
〈
Ω expS0(V ), expS0(V )� ei + expS0(V )i expS0(V )

〉
(A.17b)

= −
(
Ω expS0(V )� expS0(V )

)
i
+
〈
Ω expS(V ), expS0(V )

〉
expS0(V )i (A.17c)

= −
(
RexpS0 (V )(Ω expS0(V ))

)
i

(A.17d)
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and consequently ∂J(V ) = ∂V J(V ) = −RexpS0 (V )(Ω expS0(V )) = RS∂SJ(S) = gradg J(S). �

Proof of Proposition 5.3.
(i) Using Sk = expS0(V k) and

∂J(V k) = −RSk(ΩSk) = gradg J(Sk) (A.18)

by Lemma 5.2 along with the identities (recall that both RS and the orthogonal projection Π0 act
row-wise)

RS = Π0RS = RSΠ0 = Π0RSΠ0 = RS |T0 , S ∈ W, Π2
0 = Π0 (A.19)

and (
RSk |T0

)−1
V =

(
. . . ,Π0

V (x)

Sk(x)
, . . .

)>
, x ∈ V, V ∈ T0, Sk ∈ W (A.20)

by [SS21, Lemma 3.1], we have

〈∂J(V k), dk〉 (5.13)
= 〈∂J(V k), d(Sk, hk)〉 (A.21a)

= −〈RSk(ΩSk),Π0ΩSk〉 − hk
2
〈∂J(V k),Π0Ω∂J(V k)〉 (A.21b)

=−〈RSk(ΩSk),
(
(RSk |T0)−1RSk |T0

)
Π0ΩSk〉 − hk

2
〈∂J(V k),Π0Ω∂J(V k)〉 (A.21c)

(5.16),(A.19),(A.20)
= −〈RSk(ΩSk), RSk(ΩSk)〉Sk −

hk
2
〈∂J(V k),Π0Ω∂J(V k)〉. (A.21d)

Since the first term on the right-hand side of (A.21d) is negative on T0, setting

hk ∈
(

0,
‖RSk(ΩSk)‖2

Sk

|〈∂J(V k),Π0Ω∂J(V k)〉|

)
(A.22)

yields a sequence (dk)k≥1 satisfying

〈∂J(V k), dk〉 < 0, k ≥ 1. (A.23)

Consider c1, c2 ∈ (0, 1) with c1 < c2 and set

G(γ) = J(V k + γdk), (A.24a)

L(γ) = J(V k) + c1γ〈∂J(V k), dk〉 for γ ≥ 0. (A.24b)

Due to c1 < 1 and (A.23), the inequality

G′(0) = 〈∂J(V k), dk〉 < c1〈∂J(V k), dk〉 = L′(0) < 0 (A.25)

holds. Hence there is a constant tk > 0 such that

G(γ) < L(γ), γ ∈ (0, tk), (A.26a)

G(tk) = L(tk). (A.26b)

Substituting the first-order Taylor expansion

G(tk) = J(V k + tkd
k) = G(0) + tkG

′(γ̃k) (A.27a)

= J(V k) + tk〈∂J(V k + γ̃kd
k), dk〉, γ̃k ∈ (0, tk) (A.27b)

into (A.26b) yields with (A.24b), (A.23) and 0 < c1 < c2 < 1

〈∂J(V k + γ̃kd
k), dk〉 = c1〈∂J(V k), dk〉 ≥ c2〈∂J(V k), dk〉. (A.28a)
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Therefore, with ∂J(V k), dk ∈ T0 and using that the restrictionRSk |T0 of the mapRSk to T0 is invertible
with the inverse (RSk)−1

|T0 acting row-wise as specified by (A.20), the right-hand side of (A.28) becomes

c2〈∂J(V k), dk〉 = c2

〈
∂J(V k), (RSk |T0)−1(RSk(dk))

〉
(A.28b)

(5.16),(A.20)
= c2

〈
Π0∂J(V k), RSk(dk)

〉
Sk
. (A.28c)

By virtue of (A.18) and Π0∂J(V k) = ∂J(V k), both sides of (A.28) correspond to the expressions of
(5.15b) between the bars | · · · |. Since the above derivation shows that both sides of (A.28) are negative,
taking the magnitude on both sides proves (5.15b).

Recalling the shorthand (5.9), inequality (A.27) and setting θk small enough with θk ≤ γ̃k, the
iterates Sk+1 = expS0(V k + θkdk) satisfy

J(Sk+1)− J(Sk)
(A.27)

= tk〈∂J(V k + γ̃kd
k), dk〉 (A.29a)

≤ θk〈∂J(V k + γ̃kd
k), dk〉 (A.29b)

(A.28)
≤ θkc2〈∂J(V k), dk〉 (A.29c)

(A.18)
(A.28)

= θkc2〈gradg J(Sk), RSk(dk)〉Sk (A.29d)

which proves inequality (5.15a) since both sides are non-positive and c1 < c2.
(ii) We prove by contradiction: Assume, on the contrary, that there exists a sequence (Sk)k≥0 ⊂ W in the

compact setW and a convergent subsequence (Skl)l≥0 with limit point lim
l→∞

Skl = S∗ which is not an

equilibrium of (2.38a). Then, since the functional (2.46) is bounded from below onW , taking the sum
in (5.15a) yields
∞∑
l=0

c1γkl〈gradgJ(Skl), RSkl (d
kl)〉Skl >

∞∑
l=0

(
J(Skl+1)− J(Skl)

)
= J(S∗)− J(S0)︸ ︷︷ ︸

>−∞

, (A.30)

and consequently
c1γ∗〈gradgJ(S∗), RS∗(d

∗)〉S∗ = 0. (A.31)

Using d∗ = d(S∗, h∗) given by (5.11) along with c1 > 0 and the assumption γ∗ > 0, we evaluate this
equation similarly to (A.21)

0 = 〈gradg J(S∗), RS∗(d
∗)〉S∗ (A.32a)

(A.19)
=

〈
−RS∗(ΩS∗), RS∗

(
ΩS∗ +

h∗
2

ΩRS∗(ΩS
∗)
)〉

S∗
(A.32b)

(5.16),(A.19)
= −

∑
x∈V

〈
Π0RS∗(x)(ΩS

∗)(x),
RS∗(x)

(
ΩS∗ + h∗

2 ΩRS∗(ΩS
∗)
)
(x)

S∗(x)

〉
(A.32c)

(A.20)
= −

∑
x∈V

〈
RS∗(x)(ΩS

∗)(x), (RS∗(x)|T0)−1RS∗(x)

(
ΩS∗ +

h∗
2

ΩRS∗(ΩS
∗)
)

(x)
〉

(A.32d)

(A.19)
= −〈ΩS∗, RS∗(ΩS∗)〉 −

h∗
2

〈
ΩS∗, RS∗

(
ΩRS∗(ΩS

∗)
)〉
. (A.32e)

Hence
h∗
2

〈
ΩS∗,RS∗

(
ΩRS∗(ΩS

∗)
)〉

= −〈ΩS∗, RS∗(ΩS∗)〉 (A.33a)



48 D. SITENKO, B. BOLL, C. SCHNÖRR

= −
∑
x∈V

〈
(ΩS∗)(x), RS∗(x)(ΩS

∗)(x)
〉

(A.33b)

using Rp1c = 0, p ∈ S

= −
∑
x∈V

〈
(ΩS∗)(x)−

〈
(ΩS∗)(x), S∗(x)

〉
1c, RS∗(x)(ΩS

∗)(x)
〉

(A.33c)

(2.36)
= −

∑
x∈V

〈
(ΩS∗)(x)−

〈
(ΩS∗)(x), S∗(x)

〉
1c, (A.33d)

S∗(x)�
(

(ΩS∗)(x)−
〈
S∗(x), (ΩS∗)(x)

〉
1c
)〉

(A.33e)

= −
∑
x∈V

∑
j∈[c]

S∗j (x)
(

(ΩS∗)j(x)−
〈
(ΩS∗)(x), S∗(x)

〉)2
. (A.33f)

By [ZZS21, Proposition 5], S∗ is an equilibrium of the flow (2.38a) if and only if

(ΩS∗)j(x) = 〈(ΩS)∗(x), S∗(x)〉, ∀x ∈ V, ∀j ∈ supp(S∗(x)). (A.33g)

Therefore, by assumption, there exists x̃ ∈ V and l ∈ supp
(
S∗(x̃)

)
with (ΩS∗)l(x̃) 6= 〈ΩS∗(x̃), S∗(x̃)〉

and consequently

h∗
2

〈
ΩS∗, RS∗

(
ΩRS∗(ΩS

∗)
)〉

= −〈ΩS∗, RS∗(ΩS∗)〉 (A.33h)

≤ −S∗l (x̃)
(

(ΩS∗)l(x̃)−
〈
(ΩS∗)(x̃), S∗(x̃)

〉)2
(A.33i)

< 0. (A.33j)

Since the first two expressions are strictly negative, this yields the contradiction

−1

2
〈ΩS∗, RS∗(ΩS∗)〉 = −1

2

〈ΩS∗, RS∗(ΩS∗)〉
|〈ΩS∗, RS∗(ΩRS∗(ΩS∗))〉|

|〈ΩS∗, RS∗(ΩRS∗(ΩS∗))〉| (A.34a)

(A.19),(5.9)
= −1

2

〈ΩS∗, RS∗(ΩS∗)〉
|〈gradg J(S∗),Π0Ω gradg J(S∗)〉|

|〈ΩS∗, RS∗(ΩRS∗(ΩS∗))〉| (A.34b)

(A.22),(5.9)
≤ −h∗

2
|〈ΩS∗, RS∗(ΩRS∗(ΩS∗))〉| (A.34c)

(A.33h)
= −〈ΩS∗, RS∗(ΩS∗)〉 (A.34d)

which proves (ii).
(iii) We prove by contraposition and show that a limit point S∗ ∈ W cannot locally minimize J(S). Let

S(l) ∈ W be a constant vector field given for each x ∈ V by

S(l)(x) = el = (0, . . . , 0, 1, 0 . . . , 0)> ∈ Rc, (A.35)
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for arbitrary l ∈ [c]. Then, for any S ∈ W with S(x) ∈ ∆c for each x ∈ V , and with Ω(x, y) ≥ 0,

〈S,ΩS〉 =
∑
x∈V

∑
j∈[c]

∑
y∈N (x)

Ω(x, y)Sj(x)Sj(y) ≤
∑
x∈V

( ∑
y∈N (x)

Ω(x, y)
)∑
j∈[c]

Sj(x)

︸ ︷︷ ︸
=1

(A.36a)

=
∑
x∈V

∑
j∈[c]

∑
y∈N (x)

Ω(x, y)S(l)j(x)S(l)j(y) (A.36b)

= 〈S(l),ΩS(l)〉, (A.36c)

where the inequality is strict if S ∈ W . Consequently, the constant vector S(l) is a global mini-
mizer of the objective function J(S) (2.46) with minimal value J(S(l)) = −1

2

∑
x∈V

∑
y∈N (x)

Ω(x, y). Let

Bδ(S
∗) ⊂ W be the open ball with radius δ > 0 containing S∗. By assumption, S∗j (x) > 0, ∀x ∈

V, ∀j ∈ [c] and there exists an ε > 0 small enough such that

S∗ε := S∗ + ε(S(l) − S∗) ∈ Bδ(S∗) ⊂ W. (A.37)

Evaluating J(S) at S∗ε yields

J(S∗ε )
(A.37)

= −1

2

〈
S∗ + ε(S(l) − S∗),Ω(S∗ + ε(S(l) − S∗))

〉
(A.38a)

= J(S∗)− ε〈S∗,Ω(S(l) − S∗)〉 −
ε2

2
〈S(l) − S∗,Ω(S(l) − S∗)〉 (A.38b)

(ii),(2.2)
= J(S∗)− ε

〈
〈S∗,ΩS∗〉1, Sl − S∗

〉
+
ε2

2

〈
〈S∗,ΩS∗〉1, S(l) − S∗

〉
(A.38c)

+ ε2
(
J(S(l)) +

1

2
〈S(l),ΩS

∗〉
)
, (A.38d)

and since 〈1, S(l) − S∗〉 =
∑

x∈V
∑

j∈[c](S(l)j(x)− S∗j (x))
(A.35)

=
∑

x∈V(1−
∑

j∈[c] S
∗
j (x)) = 0,

= J(S∗) + ε2
(
J(S(l)) +

1

2
〈S(l),ΩS

∗〉
)
. (A.38e)

It follows from (ii) that S∗ is an equilibrium point. Hence we can invoke condition (A.33g) to obtain
the identity

1

2
〈S(l),ΩS

∗〉 =
1

2

∑
x∈V

∑
j∈[c]

(ΩS∗)j(x)S(l)j(x) =
1

2

∑
x∈V

(ΩS∗)l(x) (A.38f)

(A.33g)
=

1

2

∑
x∈V
〈S∗(x),ΩS∗(x)〉 = −J(S∗) (A.38g)

and consequently, since S(l) was shown above to be a global minimizer of J ,

J(S∗ε ) = J(S∗) + ε2
(
J(S(l))− J(S∗)

)
< J(S∗). (A.38h)

By assumption we have S∗ ∈ W and using (A.36) it holds J(S∗ε ) < J(S∗). As δ > 0 was chosen
arbitrarily subject to the constraint (A.37), this shows that S∗ cannot be a local minimizer which proves
(iii).



50 D. SITENKO, B. BOLL, C. SCHNÖRR

(iv) Analogous to (A.33) we compute

−hk
2

〈
ΩSk, RSk

(
ΩRSk(ΩSk)

)〉
− 〈ΩSk, RSk(ΩSk)〉

= −hk
2

〈
ΩSk, RSk

(
ΩRSk(ΩSk)

)〉
−
∑
x∈V

∑
j∈[c]

Skj (x)
(

(ΩSk)j(x)−
〈
(ΩSk)(x), Sk(x)

〉)2

= −hk
2

〈
ΩSk, RSk

(
ΩRSk(ΩSk)

)〉
−
∑
x∈V

∑
j∈[c]

1

Skj (x)

(
Skj (x)

(
(ΩSk)j(x)−

〈
(ΩSk)(x), Sk(x)

〉))2

= −hk
2

〈
ΩSk, RSk

(
ΩRSk(ΩSk)

)〉
−
∑
x∈V

〈 1
Sk(x)

, gradg(J(Sk))(x)� gradg(J(Sk))(x)
〉
.

(A.39)
Since this expression converges to 0 for k →∞, the additional assumption

∑∞
k=0 hk <∞ implies that

the second term on the right hand side is a zero sequence which shows (iv). �

A.5. Proofs of Section 5.3.

Proof of Proposition 5.5.

(i) Let D be the diagonal degree matrix

D(x, x) =
∑
y∈V

Ω(x, y), (A.40)

and let f ∈ FV . Then, using
∑

x,y∈V
f2(x) =

∑
x,y∈V

f2(y), one has

〈f, (D − Ω)f〉V =
∑
x∈V

∑
y∈V

Ω(x, y)
(
(f2(x)− f(x)f(y)

)
(A.41a)

Ω(x,y)=Ω(y,x)
=

∑
x∈V

∑
y∈V

Ω(x, y)
(
(
1

2
f2(x)− f(x)f(y) +

1

2
f2(y)

)
(A.41b)

=
1

2

∑
x∈V

∑
y∈V

Ω(x, y)(f(x)− f(y))2. (A.41c)

Now we directly derive the right-hand side of (5.21) from (5.20).

−
〈f,Dα(ΘGαf)〉V

〈f, f〉V
(2.17),(2.14)

=

∑
x∈V

f(x)2
( ∑
y∈V

Θ(x, y)α2(x, y)(f(x)− f(y))
)

∑
x∈V

f2(x)
(A.42a)

(2.6), f |VαI =0

=

∑
x∈V

f(x)2
( ∑
y∈V∪̇VαI

Θ(x, y)α2(x, y)(f(x)− f(y))
)

∑
x∈V

f2(x)
(A.42b)

=

∑
x∈V

∑
y∈V

(
Θ(x, y)α2(x, y)(f2(x)− 2f(x)f(y) + f2(x))

)
∑
x∈V

f2(x)
(A.42c)



A NONLOCAL GRAPH-PDE AND HIGHER-ORDER GEOMETRIC INTEGRATION FOR IMAGE LABELING 51

+

2
∑
x∈V

( ∑
y∈VαI

Θ(x, y)α2(x, y)
)
f2(x)∑

x∈V
f2(x)

(A.42d)

and analogous to (A.41)

=

∑
x∈V

∑
y∈V

Θ(x, y)α2(x, y)(f(x)− f(y))2 + 2
∑
x∈V

( ∑
y∈VαI

Θ(x, y)α2(x, y)
)
f2(x)∑

x∈V
f2(x)

(A.42e)

(2.6)
(3.5)
(3.3)
=

∑
x∈V

∑
y∈V

Ω(x, y)(f(x)− f(y))2 + 2
∑
x∈V

(
λ(x)−

∑
y∈V Ω(x, y)

)
f2(x)∑

x∈V
f2(x)

(A.42f)

(A.41)
= 2

〈f, (D − Ω)f〉V + 〈f, (Λ−D)f〉V
〈f, f〉V

(A.42g)

= 2
〈f, (Λ− Ω)f〉V
〈f, f〉V

(A.42h)

which proves that the right-hand sides of (5.20) and (5.21) are equal.
By virtue of (3.5) which is an equation by assumption, the matrix Λ−Ω defined by (5.22) and (3.3)

is diagonal dominant, i.e.∣∣(Λ(x, x)− Ω(x, x)
)
−
∑
y∈V
y 6=x

Ω(x, y)
∣∣ =

∑
y∈VαI

Θ(x, y)α2(x, y) ≥ 0, x ∈ V, (A.43)

and therefore positive semidefinite, which shows λD1 ≥ 0. In order to show that in fact the strict
inequality λD1 > 0 holds, let f ∈ FV be such that equality is achieved in (5.20). We distinguish
constant and non-constant functions f . For constant f = c1, c ∈ R, since the set VαI given by (2.8) is
nonempty, there exists an x̃ ∈ V with

∑
y∈VIα Θ(x̃, y)α2(x̃, y) > 0. Hence by (A.42e), (A.42h),

λD1 =
〈f, (Λ− Ω)f〉V
〈f, f〉V

>

∑
y∈VIα Θ(x̃, y)α2(x̃, y)

2n
> 0. (A.44)

If f is non-constant, then there exist x̃, ỹ ∈ V with f(ỹ) 6= f(x̃). Hence, since V is connected, (A.42e),
(A.42h) yield

λD1 =
〈f, (Λ− Ω)f〉V
〈f, f〉V

>
Ω(x̃, ỹ)(f(x̃)− f(ỹ))2

2 max
x∈V

f2(x)
> 0. (A.45)

(ii) We perform similarly to (2.8) a disjoint decomposition of the vertex set V and introduce the sets

Vi = {x ∈ V : α(x, y) = 0 for y ∈ VαI }, Vb = V \ Vi. (A.46)

Hence Vb 6= ∅ if and only if VαI 6= ∅ and (3.2), (3.3) yield

∀x ∈ Vi, λ(x)−
∑
y∈V

Ω(x, y) = 0. (A.47)

Let f be a normalized eigenvector to the smallest eigenvalue λmin(Ω) of Ω. Then, using (A.47) and the
inequality

(f(x)− f(y))2 ≤ 2(f2(x) + f2(y)), x, y ∈ V, f ∈ FV (A.48)
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further yields

−λmin(Ω) = −〈f,Ωf〉V = 〈f, (D − Ω)f〉V − 〈f,Df〉V (A.49a)
(A.40),(A.41)

=
1

2

∑
x∈V

∑
y∈V

Ω(x, y)(f(x)− f(y))2 −
∑
x∈V

∑
y∈V

Ω(x, y)f2(x) (A.49b)

(A.48)
≤

∑
x∈V

∑
y∈V

Ω(x, y)f2(x) (A.49c)

(A.46)
=

∑
x∈Vi

∑
y∈V

Ω(x, y)f2(x) +
∑
x∈Vb

∑
y∈V

Ω(x, y)f2(x) (A.49d)

(2.34),(3.3)
≤

∑
x∈Vi

f2(x) +
∑
x∈Vb

(
1−

∑
y∈VαI

Θ(x, y)α2(x, y)
)
f2(x) (A.49e)

=
∑
x∈V

f2(x)−
∑
x∈Vb

∑
y∈VαI

Θ(x, y)α2(x, y)f2(x) (A.49f)

(2.6)
= 1−

∑
x∈Vb

(
1−Θ(x, x)−

∑
y∈V

Θ(x, y)α2(x, y)
)
f2(x) (A.49g)

(3.5)
< 1. (A.49h)

�

A.6. Proofs of Section 6.1.

Proof of Lemma 6.1. SinceW ⊂ Rnc is compact, (Sk)k≥0 ⊂ W is bounded and there exists a convergent
subsequence (Skl)l≥0 with lim

l→∞
Skl = S∗ and Λ nonempty and compact. Due to Proposition 5.3, the

sequence (J(Sk))k≥0 is nonincreasing and bounded from below with lim
k→∞

J(Sk) = J∗ for some J∗ > −∞.

In view of the definition (2.39) of the mapping S 7→ RS(ΩS), the right-hand side of (5.11) is bounded
for any S ∈ S . Hence the subsequence (dkl)l≥0 induced by (Skl)l≥0 through (5.11), (5.13) is convergent as
well. Consequently, for any limit point S∗ ∈ Λ, there exists a subsequence (Skl)l≥0 with

Skl → S∗ and dkl → d∗ as l→∞. (A.50)

It remains to show that lim
l→∞

J(Skl) = J(S∗) = J∗.

Analogous to the proof of Proposition 5.1, we adopt the decomposition (A.10) of J(S) by

J(S) = g(S)− h(S) with g(S) = δW(S) + γ〈S, logS〉, (A.51a)

h(S) =
1

2
〈S,ΩS〉+ γ〈S, logS〉, (A.51b)

with appropriately chosen initial decomposition parameter γ in Algorithm 4 such that g, h are strictly convex
onW . By the lower semicontinuity of J(S), we have

lim inf
l→∞

J(Skl) ≥ J(S∗). (A.52)

In addition, by invoking line 13 of Algorithm 4 defining the iterate Skl by the inclusion γθkl−1S̃
kl−1 ∈

∂g(Skl) if θk satisfy the Wolfe conditions, and by line (16) otherwise, we have

g(Skl)− γθkl−1〈S̃kl−1, Skl − Skl−1〉 ≤ g(S∗)− γθkl−1〈S̃kl−1, S∗ − Skl−1〉, (A.53)
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which after rearranging reads

g(Skl) ≤ g(S∗)− γθkl−1〈dkl−1, S∗ − Skl〉 − γ
〈

log
(Skl−1

1c

)
, S∗ − Skl

〉
. (A.54)

Setting

δ =
∑
x∈V

∑
j∈supp(S∗(x))

log(S∗j (x)) · S∗j (x) (A.55)

and using (A.50), we obtain for the last term

lim
l→∞

〈
log
(Skl−1

1c

)
, S∗ − Skl

〉
= lim

l→∞
〈log(Skl−1), S∗ − Skl〉 (A.56a)

= lim
l→∞

(
〈log(Skl−1) + log(eθkl−1d

kl−1

), S∗ − Skl〉 − θkl−1〈dkl−1, S∗ − Skl〉
)

(A.56b)

= lim
l→∞

(〈
log
(

expSkl−1(θkl−1d
kl−1)

)
+ log〈Skl−1, eθkl−1d

kl−1

〉1c, S∗ − Skl
〉

(A.56c)

− θkl−1〈dkl−1, S∗ − Skl〉
)

(A.56d)

using 〈1c, S∗ − Skl〉 = 1− 1 = 0

(A.55)
= lim

l→∞
〈log(Skl), S∗ − Skl〉︸ ︷︷ ︸

→δ−δ=0

− lim
l→∞
〈θkl−1d

kl−1, S∗ − Skl〉︸ ︷︷ ︸
→0

(A.56e)

= 0. (A.56f)

Hence by noticing θk ∈ [θ0,
1

|λmin(Ω)| ], the sequence (θkl) is bounded and taking the limit in (A.54) yields

lim sup
l→∞

g(Skl) ≤ g∗(S∗). (A.57)

Now, turning to the function h of (A.51), lower semicontinuity yields lim inf
l→∞

h(Skl) ≥ h(S∗) and hence

lim sup
l→∞

J(Skl) = lim sup
l→∞

(
g(Skl)− h(Skl)

)
≤ lim sup

l→∞
g(Skl)− lim inf

l→∞
h(Skl) (A.58a)

(A.57)
≤ g(S∗)− h(S∗). (A.58b)

Finally, combining this with (A.52) and by uniqueness of the limit J∗, we have J(S∗) = J∗ for any S∗ ∈ Λ,
which completes the proof. �

Proof of Lemma 6.2. Throughout the proof we skip the action of projection operator Π0 in dk(x) given by
(5.11) and (5.14), due to the invariance of lifting map (2.41) by property (2.42b). By definition (5.14) of
Sk+1, it follows for x ∈ V and j ∈ J+(S∗(x)) that(

Sk+1(x)− Sk(x)
)
j

= Skj (x)
( eθkd

k(x)

〈Sk(x), eθkdk(x)〉
− 1
)
j

=
Skj (x)

〈Sk(x), eθkdk(x)〉

(
eθkd

k
j (x) − 〈Sk(x), eθkd

k(x)〉
)

=
Skj (x)

〈Sk(x), eθkdk(x)〉

( ∞∑
l=0

βkl,j(x)
)
, ∀J+(S∗(x)),

(A.59)
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where we employed the power series of the exponential function and the shorthand (βkl,j(x))l≥0

βkl,j(x) =
θlk
l!

(
(dkj (x))l − 〈Sk(x), (dk(x))l〉

)
(A.60a)

(5.11)
=

θlk
l!

(
(ΩSk)lj(x)− 〈Sk(x), (ΩSk)l(x)〉

)
+O(hk). (A.60b)

Let M :W × R+ → R+ denote the function

M(S, γ) = max
x∈V

max
h∈[0,hmax]

〈S(x), eγd(S,h)(x)〉2 ≤M∗, S ∈ W, (A.61)

with hmax = max
k≥0

hk and d(S, h) as in (5.11). Since M(S, γ) is a continuous mapping on a compact set

W × [θmin, θmax], it attains its maximum M∗ > 1. Due to the equilibrium condition (A.33g) there exists an
ε1 > 0 such that, for all S ∈ W with ‖S∗ − S‖ < ε1, the inequality

−
(

(ΩS)j(x)− 〈ΩS(x), S(x)〉
)
> − 1√

M∗

(
(ΩS∗)j(x)− 〈ΩS∗(x), S∗(x)〉

)
> 0. (A.62)

is satisfied for all indices j ∈ J+(S∗(x)) given by (6.2) (i.e. the terms inside the brackets on either side
are negative) and x ∈ V . In particular, since S∗ ∈ W is a limit point of (Sk)k≥0, there is a convergent
subsequence (Sks)s≥0 with Sks → S∗ and consequently ‖Sks0 − S∗‖ < ε1 for some ks0 ∈ N. Now, using
the componentwise inequality pl ≤ p for l ∈ N and p ∈ S, we have

0 ≤
〈
1,
(
Sk(x)� ΩSk(x)

)l〉 ≤ 〈Sk(x), (ΩSk(x))l
〉
. (A.63)

Employing (A.63) in (A.60) and using hks → 0 shows that there exists a smallest index k0 ≥ ks0 such that

βl,j(x) ≤
θlk
l!

(
(ΩSks0 )lj(x)−〈Sks0 (x), (ΩSks0 (x))〉l

)
+O(hks0 ) < 0, ∀j ∈ J+(S∗(x)), l ∈ N. (A.64)

Therefore, setting ε1 := ‖S∗−Sk0‖ for all Sk satisfying ‖Sk−S∗‖ < ε and k ≥ k0 with ε := min{ε0, ε1},
the inequalities (A.62) and (A.64) are simultaneously satisfied and using

(ΩSks0 )lj(x)
(6.2)
< 〈(ΩSks0 )(x), Sks0 (x)〉l, ∀j ∈ J+(S∗(x)), l ∈ N (A.65)

enables to estimate (A.59) by(
Sk+1(x)− Sk(x)

)
j

=
Skj (x)

〈Sk(x), eθkdk(x)〉

( ∞∑
l=1

βkl,j(x)
)

(A.66a)

(A.64)
≤

Skj (x)

〈Sk(x), eθkdk(x)〉

(
θk
(
(ΩSk)j(x)− 〈Sk(x),ΩSk(x)〉

)
(A.66b)

+

∞∑
l=2

θlk
l!

(
(ΩSk)lj(x)− 〈Sk(x),ΩSk(x)〉l

)
+O(hk)

)
(A.66c)

(A.62)
≤

−Skj (x)

〈Sk(x), eθkdk(x)〉 ·
√
M∗

(
θk
(
〈ΩS∗(x), S∗(x)〉 − (ΩS∗)j(x)

))
(A.66d)

(A.61)
≤ −θk

Skj (x)

M∗
(
〈ΩS∗(x), S∗(x)〉 − (ΩS∗)j(x)

)
, ∀J+(S+(x)). (A.66e)

Taking the sum over x ∈ V shows (6.3). �
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A.7. Proofs of Section 6.2.

Proof of Theorem 6.4. Let S∗ ∈ Λ be a limiting point of (Sk)k≥0 with S∗(x) ∈ S \ S, ∀x ∈ V , by
Proposition 5.3(iii), and let θk ∈ R+, S

k+1 ∈ W and S̃k be determined by Algorithm 4 (see lines (13)
and (14)), respectively. Then, by the well-known three-point identity [CT93, Lemma 3.1] with respect to
Sk+1, Sk ∈ W, S∗ ∈ W , one has

DKL(S∗, Sk+1)−DKL(S∗, Sk) = −DKL(Sk+1, Sk)− 〈∇f(Sk+1)−∇f(Sk), S∗ − Sk+1〉. (A.67)

Recalling step size selection 3 it holds θk ∈ (θ0,
1

|λmin(Ω)|) and leveraging the DC-decomposition (A.51)

with γ = 1
θk

, the inclusion ΩSk + 1
θk

log(S
k

1c
) ∈ ∂h(Sk) and the strict convexity of h(S) onW imply by the

gradient inequality

h(Sk+1)− h(Sk)−
〈

ΩSk +
1

θk
log
(Sk

1c

)
, Sk+1 − Sk

〉
> 0 (A.68)

and hence

h(Sk+1)− h(Sk)−
〈

ΩSk +
1

θk
log
(Sk

1c

)
, Sk+1 − Sk

〉
(A.69a)

(A.51b)
=

1

2
〈Sk+1,ΩSk+1〉 − 1

2
〈Sk,ΩSk〉 (A.69b)

+
1

θk

(
〈Sk+1, log(Sk+1)〉 − 〈Sk, logSk〉 −

〈
log
(Sk

1c

)
, Sk+1 − Sk

〉)
(A.69c)

− 〈ΩSk, Sk+1 − Sk〉 (A.69d)
(2.46),(6.4)

= J(Sk)− J(Sk+1) +
1

θk
DKL(Sk+1, Sk)− 〈ΩSk, Sk+1 − Sk〉. (A.69e)

Therefore inequality (A.68) is equivalent to

−DKL(Sk+1, Sk) ≤ θk
(
J(Sk)− J(Sk+1)− 〈ΩSk, Sk+1 − Sk〉

)
. (A.70)

Combining (A.70) and (A.67) yields

DKL(S∗, Sk+1)−DKL(S∗, Sk) ≤ θk
(
J(Sk)− J(Sk+1)− 〈ΩSk, Sk+1 − Sk〉

)
− 〈∇f(Sk+1)−∇f(Sk), S∗ − Sk+1〉.

(A.71)

Next, in view of Algorithm 4, line (14), we rewrite the last term in (A.71) in the form

〈∇f(Sk+1)−∇f(Sk), S∗ − Sk+1〉
(6.7)

Sk,Sk+1∈W
= 〈1c + log(Sk+1)− (1c + log(Sk)), S∗ − Sk+1〉 (A.72a)

Algorithm 4
line (14)

= 〈log(Sk) + log(eθkd
k
)− log(Sk), S∗ − Sk+1〉 (A.72b)

− 〈log(〈Sk, eθkdk〉)1c, S∗ − Sk+1〉︸ ︷︷ ︸
=0

(A.72c)

= θk〈dk, S∗ − Sk+1〉. (A.72d)
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Consequently, (A.71) becomes

DKL(S∗, Sk+1)−DKL(S∗, Sk) (A.73a)

≤ θk
(
J(Sk)− J(Sk+1)

)
− θk〈ΩSk, S∗ − Sk〉 −

θkhk
2
〈ΩRSk(ΩSk), S∗ − Sk+1〉 (A.73b)

(2.46)
= θk

(
2
(
J(S∗)− J(Sk+1)

)
+ J(Sk+1)− J(Sk) (A.73c)

− hk
2
〈ΩRSk(ΩSk), S∗ − Sk+1〉 − 〈Sk,ΩS∗〉 − 2J(S∗)

)
. (A.73d)

Using the inequality of Cauchy Schwarz and taking into account S∗ ∈ W, S ∈ W , we estimate with λ(Ω)
defined by (6.9b)

|〈ΩRS(ΩS), S∗ − S〉| ≤ ‖ΩRS(ΩS)‖ · ‖S∗ − S‖ ≤ λ2(Ω)

2
‖S‖
√
n ≤ λ2(Ω) · n

2
, (A.74)

where the factor 1
2 is due to the fact that the matrices RS(x) given by (2.36) are positive semidefinite with

λmax(RS(x)) ≤ 1
2 , which easily follows from Gershgorin’s circle theorem.

Using the descent step based on (5.11) and (A.23), we consider three further terms of (A.73).

J(Sk+1)− J(Sk)− hk
2
〈ΩRSk(ΩSk), S∗ − Sk+1〉 (A.75a)

(5.15a)
≤ θkc1 〈RSk(ΩSk), RSk(dk)〉Sk︸ ︷︷ ︸

≤0

−hk
2
〈ΩRSk(ΩSk), S∗ − Sk+1〉 (A.75b)

(5.11)
≤ −θkc1(〈RSk(ΩSk), RSk(ΩSk)〉Sk (A.75c)

+
θkc1hk

2
|〈RSk(ΩSk), RSkΩRSkΩSk〉Sk |) +

hk
2
|〈ΩRSk(ΩSk), S∗ − Sk+1〉|

(A.75d)
(A.22),(A.74)
≤ −θkc1

2
〈RSk(ΩSk), RSk(ΩSk)〉Sk +

λ2(Ω)nhk
4

(A.75e)

= −θkc1

2
‖ grad J(Sk)‖2Sk +

λ2(Ω)nhk
4

(A.75f)

≤ 0, (A.75g)

where the last inequality is holds due to assumption (6.9). Now we focus on the last remaining term occurring
in (A.73). Using the index sets (6.2) with respect to the limit point S∗ ∈ W along with Sk(x) ∈ S, we get

−〈Sk,ΩS∗〉 − 2J(S∗)
(2.46)
= −

∑
x∈V
〈Sk(x),ΩS∗(x)〉+

∑
x∈V
〈S∗(x),ΩS∗(x)〉 (A.76a)

= −
∑
x∈V

∑
j∈[c]

Skj (x)(ΩS∗)j(x) +
∑
x∈V

∑
j∈[c]

Skj (x)

︸ ︷︷ ︸
=1

〈S∗(x),ΩS∗(x)〉 (A.76b)

= −
∑
x∈V

∑
j∈[c]

Skj (x)
(
(ΩS∗)j(x)− 〈S∗(x),ΩS∗(x)〉

)
(A.76c)

(6.2)
= −

∑
x∈V

( ∑
j∈J−(S∗(x))

Skj (x)
(
(ΩS∗)j(x)− 〈S∗(x),ΩS∗(x)〉

)
(A.76d)
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+
∑

j∈J+(S∗(x))

Skj (x)
(
(ΩS∗)j(x)− 〈S∗(x),ΩS∗(x)〉

))
. (A.76e)

As a result, combining (A.75) and (A.76) for all k ≥ K and using J(S∗)− J(Sk+1) < 0, (A.73) becomes

DKL(S∗, Sk+1)−DKL(S∗, Sk) ≤ θk
(
J(S∗)− J(Sk+1)−

∑
x∈V

( ∑
j∈J−(S∗(x))

Skj (x)
(
(ΩS∗)j(x) (A.77a)

− 〈S∗(x),ΩS∗(x)〉
)

+
∑

j∈J+(S∗(x))

Skj (x)
(
(ΩS∗)j(x)− 〈S∗(x),ΩS∗(x)〉

)))
(A.77b)

By Lemma 6.2, there exist ε > 0 and k0 ∈ N such that for all Sk ∈ W with k ≥ k0 and ‖Sk − S∗‖ < ε
inequality (6.3) is satisfied, where

Q(S) =
∑
x∈V

∑
j∈J+(S∗(x))

Sj(x).

Introducing the mapping

V : W → R+, V (S) = DKL(S∗, S) +M∗Q(S)

with M∗ > 1 as in Lemma 6.2, we obtain

V (Sk+1)− V (Sk) = DKL(S∗, Sk+1)−DKL(S∗, Sk) +M∗
(
Q(Sk+1)−Q(Sk)

)
(6.2a)
(A.77)
≤ θk

(
J(S∗)− J(Sk)−

∑
x∈V

∑
j∈J−(S∗(x))

Skj (x)
(
(ΩS∗)j(x)− 〈S∗(x),ΩS∗(x)〉

)
.

(A.78)

By Lemma 6.1 J(S) is constant on the set of limit points of the sequence (Sk) and the right-hand side of
(A.78) is strictly negative unless Sk is a stationary point of J(S). Consequently, (A.78) is strictly negative
for all k ≥ k0 with ‖Sk − S∗‖ < ε. Consider Uδ = {S ∈ W : V (S) < δ} with δ small enough such that
Uδ ⊂ {S ∈ W : ‖S − S∗‖ < ε}. Then, as S∗ ∈ Λ is a limit point, there exists an index K ≥ k0 such
that SK ∈ Uδ and (Sk)k≥K ⊂ Uδ due to V (SK+1) < V (SK) < δ by (A.78). Therefore, for k ≥ K we
conclude

0 ≤ DKL(S∗, Sk) ≤ V (Sk)→ 0 for k →∞, (A.79)

which shows Sk → S∗. �

Proof of Theorem 6.6. For ε > 0 let k ∈ N be such that Sk ∈ Bε(S∗). Then, with Sk+ 1
2 , Sk+1 ∈ W given

by (5.12) and taking into account assumption (6.10), we have for any x ∈ V with S∗(x) = ej∗(x)

‖Sk+1(x)− S∗(x)‖1 =
∑

j∈[c]\j∗(x)

Sk+1
j (x) + 1− Sk+1

j∗(x)(x) (A.80a)

= 2− 2Sk+1
j∗(x)(x) (A.80b)

(5.12)
= 2− 2

Skj∗(x)(x)eθk(ΩSk)j∗(x)(x)+
θkhk

2
(ΩR

Sk
(ΩSk))j∗(x)(x)

〈Sk(x), eθk(ΩSk)(x)+
θkhk

2
ΩR

Sk
(ΩSk)(x)〉

(A.80c)

= 2−
2Skj∗(x)(x)

Skj∗(x)(x) +
∑

j 6=j∗(x)

Skj (x)e−θkHj(x)
, (A.80d)
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with the shorthand

Hj(x) := (ΩSk)j∗(x)(x)− (ΩSk)j(x) +
hk
2

(
(ΩRSk(ΩSk))j∗(x)(x)− (ΩRSk(ΩSk))j(x)

)
. (A.81)

We consider the first two terms of the right-hand side of (A.81). Since Sk(x) ∈ Bε(S∗), we have

Skj∗(x)(x) > 1− ε

2
, Skj (x) <

ε

2
for all j 6= j∗(x) (A.82)

and get

(ΩS)j∗(x)(x)− (ΩS)j(x)
(2.48)
=
∑

y∈N (x)

Ω(x, y)Sj∗(x)(y)−
∑

y∈N (x)

Ω(x, y)Sj(y) (A.83a)

=
∑

y∈N (x)
j∗(y)=j∗(x)

Ω(x, y)Sj∗(x)(y) +
∑

y∈N (x)
j∗(y)6=j∗(x)

Ω(x, y)Sj∗(x)(y)−
∑

y∈N (x)
j∗(y)=j

Ω(x, y)Sj(y)−
∑

y∈N (x)
j∗(y) 6=j

Ω(x, y)Sj(y). (A.83b)

Skipping the nonnegative second term and applying the constraint Sj(y) < 1 for indices j∗(y) = j, it
follows with (A.82)

(ΩS)j∗(x)(x)− (ΩS)j(x) >
∑

y∈N (x)
j∗(y)=j∗(x)

Ω(x, y)Sj∗(x)(y)−
∑

y∈N (x)
j∗(y)=j

Ω(x, y)−
∑

y∈N (x)
j∗(y)6=j

Ω(x, y)Sj(y) (A.83c)

(A.82)
> (1− ε

2
)
∑

y∈N (x)
j∗(y)=j∗(x)

Ω(x, y)−
∑

y∈N (x)
j∗(y)=j

Ω(x, y)− ε

2

∑
y∈N (x)
j∗(y)6=j

Ω(x, y) (A.83d)

and after rewriting the last sum as 1−
∑

y∈N (x)
j∗(x)=j

Ω(x, y) and using S∗(x) = ej∗(x)

≥ (1− ε

2
)
(
(ΩS∗)j∗(x) − (ΩS∗)j

)
(x)− ε

2
. (A.83e)

Now we consider the last two terms of the right-hand side of (A.81), starting with the expressionRSk(ΩSk).
As Bε(S∗) is compact, the maximum

ρ∗ = max
S∈Bε(S∗)

ρ(S), ρ(S) = max
x∈V

max
l∈[c]\j∗(x)

(
(ΩS)j∗(x) − (ΩS)l

)
(x) (A.84)

is attained. For j ∈ [c] with (RSk(ΩSk)
)
j
(x) < 0, we get(

RSk(ΩSk)
)
j
(x) = Skj (x)

(
(ΩSk)j(x)− 〈Sk(x), (ΩSk)(x)〉

)
(A.85a)

= Skj (x)
(∑
l 6=j

Skl (x)
(
(ΩSk)j(x)− (ΩSk)l(x)

))
. (A.85b)

Taking into account (6.12) for Sk ∈ Bε(S∗), we have (ΩSk)j∗(x)(x) > (ΩSk)l(x) for all l ∈ [c] \ j∗(x)

by (6.11) and due to RSk(ΩSk)j(x) < 0, we conclude j 6= j∗(x) in the preceding equation. Consequently,
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applying the second inequality in (A.82) further yields(
RSk(ΩSk)

)
j
(x)

(A.82)
>

ε

2

∑
l 6=j

Skl (x)
(
(ΩSk)j − (ΩSk)l

)
(x) (A.85c)

(6.10)
≥ ε

2

∑
l 6=j

Skl (x)
(
(ΩSk)j − (ΩSk)j∗(x)

)
(x) (A.85d)

=
ε

2
(1− Skj (x))

(
(ΩSk)j − (ΩSk)j∗(x)

)
(x) (A.85e)

(A.84)
≥ −ε

2
ρ∗. (A.85f)

In view of the last two terms of the right-hand side of (A.81), we introduce the index sets

N j
−(x) := {y ∈ N (x) :

(
RS(ΩS)

)
j
(y) <

(
RS(ΩS)

)
j∗(x)

(y)},

N j
+(x) := {y ∈ N (x) :

(
RS(ΩS)

)
j
(y) >

(
RS(ΩS)

)
j∗(x)

(y)},
(A.86)

and estimate

(ΩRSk(ΩSk))j∗(x)(x)− (ΩRSk(ΩSk))j(x) =
∑

y∈N (x)

Ω(x, y)
(
RSk(ΩSk)j∗(x) −RSk(ΩSk)j

)
(y) (A.87a)

≥
∑

y∈N j+(x)

Ω(x, y)
(
RSk(ΩSk)j∗(x) −RSk(ΩSk)j

)
(y).

(A.87b)

Regarding the term (· · · ) in round brackets, using 1>RSk = 0> and consequently
∑

l∈[c](RSk(ΩSk))l(y) =

0 for y ∈ N j
+(x), it follows that

RSk(ΩSk)j∗(x)(y)−RSk(ΩSk)j(y) = 2(RSk(ΩSk))j∗(x)(y) +
∑
l∈[c]

l /∈{j∗(x),j}

(RSk(ΩSk))l(y) (A.88a)

≥ 2c min
l∈[c]\j∗(y)

(RSk(ΩSk))l(y) (A.88b)

(A.85)
> −εcρ∗. (A.88c)

Consequently, applying (A.88) and Ω(x, y) ≤ 1, inequality (A.87) becomes((
ΩRSk(ΩSk)

)
j∗(x)

−
(
ΩRSk(ΩSk)

)
j

)
(x) > −ε|N (x)|cρ∗. (A.89)

Substituting this estimate and (A.83) into (A.81) yields for any x ∈ V and j ∈ [c] \ {j∗(x)}

Hj(x) ≥ (1− ε

2
)((ΩS∗)j∗(x) − (ΩS∗)j)(x)− ε

2
− hc

2
ε|N (x)|ρ∗, h = max

k≥k0

hk. (A.90)

Thus, returning to (A.80), we finally obtain for all ε satisfying (6.15) and using

H∗(x) := min
j 6=j∗(x)

Hj(x) > 0 (A.91)
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the bound

‖Sk+1(x)− S∗(x)‖1 ≤ 2−
2Skj∗(x)(x)

Skj∗(x)(x) +
∑

j 6=j∗(x)

Skj (x)e−θkH∗(x)
(A.92a)

=
2
(
1− Skj∗(x)(x)

)
e−θkH

∗(x)

Skj∗(x)(x) +
(
1− Skj∗(x)(x)

)
e−θkH∗(x)

(A.92b)

Sk
j∗(x)

(x)=ej∗(x)

= ‖Sk(x)− S∗‖1
e−θkH

∗(x)

Skj∗(x)(x) +
(
1− Skj∗(x)(x)

)
e−θkH∗(x)︸ ︷︷ ︸

=:ξ(x)<1, if H∗(x)>0.

(A.92c)

=: ‖Sk(x)− S∗‖1 · ξ(x) (A.92d)

with ξ(x) < 1, since H∗(x) > 0 by (A.91). Induction over k > k0 yields

‖Sk+1(x)− S∗(x)‖1 < ξk−k0(x)‖Sk0(x)− S∗(x)‖1 (A.93)

which proves (6.16). �
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