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ABSTRACT. We introduce a novel generative model for the representation of joint probability distributions of
a possibly large number of discrete random variables. The approach uses measure transport by randomized
assignment flows on the statistical submanifold of factorizing distributions, which also enables to sample effi-
ciently from the target distribution and to assess the likelihood of unseen data points. The embedding of the
flow via the Segre map in the meta-simplex of all discrete joint distributions ensures that any target distribution
can be represented in principle, whose complexity in practice only depends on the parametrization of the affin-
ity function of the dynamical assignment flow system. Our model can be trained in a simulation-free manner
without integration by conditional Riemannian flow matching, using the training data encoded as geodesics in
closed-form with respect to the e-connection of information geometry. By projecting high-dimensional flow
matching in the meta-simplex of joint distributions to the submanifold of factorizing distributions, our approach
has strong motivation from first principles of modeling coupled discrete variables. Numerical experiments de-
voted to distributions of structured image labelings demonstrate the applicability to large-scale problems, which
may include discrete distributions in other application areas. Performance measures show that our approach
scales better with the increasing number of classes than recent related work.
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1. INTRODUCTION

1.1. Overview, Motivation. Generative models in machine learning define an active area of research [KPB21,
PNR+21, RH21]. Corresponding research objectives include

(i) the representation of complex probability distributions,
(ii) efficient sampling from such distributions, and

(iii) computing the likelihoods of unseen data points.
The target probability distribution is typically not given, except for a finite sample set (empirical measure).
The modeling task concerns the generation of the target distribution by transporting a simple reference mea-
sure, typically the multivariate standard normal distribution, using a smooth diffeomorphism. The latter is
realized by a network with trainable parameters that are optimized by maximizing the likelihood of the given
data or a corresponding surrogate objective which is more convenient regarding numerical optimization. This
class of approaches are called normalizing flows in the literature.

This paper is concerned with the significant subclass of discrete (categorial) probability distributions of n
random variables taking values in the finite set [c],

y = (y1, . . . , yn)
⊤ ∈ [c]n, yi ∈ [c] := {1, 2, . . . , c}, i ∈ [n], c, n ∈ N. (1.1)

A corresponding distribution p is a look-up table which specifies for any realization α of the discrete random
vector y the probability

p(α) = p(α1, . . . , αn) := Pr(y = α) = Pr(y1 = α1 ∧ · · · ∧ yn = αn), α ∈ [c]n. (1.2)

Thus any discrete distribution p is a nonnegative tensor with the combinatorially large number of

N := cn (1.3)
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entries. Furthermore, since
∑

α∈[c]n p(α) = 1, any distribution p corresponds to a point of the probability
simplex

∆N = {p ∈ RN> : ⟨1N , p⟩ = 1}, p = (pα)α∈[c]n , pα = p(α). (1.4)

Such distributions abound in applications (Section 1.2), yet have received less attention in the literature
on generative models. The recent survey paper [KPB21] concludes with a short paragraph devoted to dis-
crete distributions and the assessment that “the generalization of normalizing flows to discrete distributions
remains an open problem”. Likewise, the survey paper [PNR+21] discusses briefly generative models of
discrete distributions in Section 5.3. Authors state that “compared to flows on RD, discrete flows have no-
table theoretical limitations”. The survey paper [RH21] does not mention at all generative models of discrete
distributions.

This paper introduces a novel generative model tailored to discrete distributions
• by pushing forward a simple reference distribution on a submanifold of discrete measures which

‘spans’ the entire simplex (1.4);
• by determining the parameters of the generative map through matching the flow of a corresponding

dynamical system to closed-form geodesics encoding training data.
Figure 1.1 illustrates the approach for the toy distribution of two binary variables

p(α1, α2) :
α1/α2 0 1

0 0.45 0.05
1 0.05 0.45

(1.5)

The simplex ∆4 ⊂ R4 (1.4) is visualized in R3 in local coordinates as tetrahedron. The generative model
only uses the submanifold of factorizing discrete distributions which ensures computational efficiency of
both training and sampling. Sampling is done by computing the integral curve of random initial points, each
of which converges to a vertex corresponding to a realization α.

1.2. Related Work, Contribution.

1.2.1. Mathematics, Statistics. Joint distributions of discrete random variables have a long history in multi-
variate statistics [Agr13]. This includes the study of subsets of such distributions known as discrete graphical
models [Lau96, CDLS99, KF09]. Here, conditional independency assumptions encoded by the structure of
an underlying graph [Stu05] effectively reduce the degree of freedoms (1.3) of general discrete distributions
and imply factorization of p once realizations of conditioning variables are observed. From the algebraic
viewpoint, such statistical assumptions about p give rise to monomial constraints. The study of the topology
and geometry of the resulting algebraic varieties which support corresponding subfamilies of distributions, is
the subject of the fields of algebraic statistics [GMS06, LSX09, DSS09, Zwi16, Sul18]. In fact, the special
case of fully factorizing discrete distributions

p(α) =
∏
i∈[n]

pi(αi) (1.6)

is particularly relevant for this paper. For example, the subfamily of all such distributions, in the case
n = c = 2, is depicted by Figure 1.1 and known as as Wright manifold in mathematical game theory [HS98]
and more generally as Segre variety Σ1,1 in algebraic geometry [Har92, Lan12].

1.2.2. Own Prior Work. Our approach utilizes assignment flows [ÅPSS17] whose flow evolves on the prod-
uct of the relative interiors of the probability simplices ∆c, called assignment manifold, one factor for each
random variable yi, i ∈ [n]. The restriction to strictly positive discrete distribution with full support enables
to turn these domains into elementary statistical manifolds equipped with the Fisher-Rao geometry and the
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FIGURE 1.1. Visualization of 1000 samples from the target distribution p(α1, α2) given by
(1.5), corresponding to the blue point in the meta-simplex SN , N = cn = 4, with n = 2
binary random variables y1, y2, each taking c = 2 values. Each sample corresponds to an
integral curve T (W (t)) (2.20) of the assignment flow ODE (2.10) on the embedded subman-
ifold of factorizing distributions W ⊆ S4, which can be computed efficiently by geometric
integration. The entire assignment flow pushes forward a standard Gaussian reference dis-
tribution on the tangent space T0 (not shown) at the barycenter (red point), which is lifted
to the submanifold and transported to the extreme points. The resulting ‘weights’ represent
the blue target distribution as convex combination. The parametrized vector field of the gen-
erative model is trained in a stable and efficient way by matching e-geodesic curves on the
assignment manifold, which represent the training data and can be computed in closed form.

e-connection of information geometry [AN00]. The corresponding exponential map and the geodesics can
be specified in closed form.

This paper introduces the following approach to devising a generative model for discrete random vari-
ables: Geometric integration of the assignment flow realizes a map which pushes forward a standard refer-
ence measure on the tangent space at the barycenter to an extreme point of the (closure) of the assignment
manifold. By embedding the assignment manifold into the simplex (1.4) of all discrete joint distributions
using the Segre map, the pushforward measure concentrates on the extreme points and hence represents a
more complex non-factorizing discrete joint distribution by convex combination of Dirac measures, each of
which corresponds to a realization α ∈ [c]n. Figure 3.1 provides a schematic overview.

Our recent work [BCA+24] characterizes assignment flows as multi-population games and studies multi-
game dynamics via the aforementioned embedding approach. Results established in this work will be em-
ployed in Section 3.4.

1.2.3. Machine Learning. The aforementioned negative statements in the survey papers [KPB21, PNR+21]
about generative models for discrete distributions have stimulated corresponding research recently, in the
field of machine learning. We refer to [BGAS24, Section 2.2] for a discussion which we do not repeat
here. To the best of our knowledge, none of these approaches is directly tailored to discrete distributions like
our approach based on a correponding Riemannian statistical manifold (see Section 1.2.4 for a discussion
of papers which appeared during writing this manuscript). Likewise, the very fact that distributions (1.2)
are nonnegative tensors suggest connections to the corresponding literature and low-rank approximations
[KB09, GKT13, Hac14]. For example, factorizing multivariate functions have been used for multivariate
function approximation (e.g., [BGM09]), and tensorization of rank-1 tensors in order to represent higher-rank
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tensors [KB09] are similar to Segre embeddings from algebraic geometry. Yet, both the context (generative
models) and our geometric approach distinguish our approach.

Regarding the training of our generative model, our approach builds on the recent work [LCBH+23,
CL23]. The authors introduced a flow-matching approach to the training of continuous generative models
which enables more stable and efficient training and hence an attractive alternative to established maximum
likelihood training. In this paper, we adopt this criterion and adapt it to our generative model for discrete
distributions. In particular, we encode given training data as e-geodesics on the assignment manifold which
makes flow matching convenient and effective.

1.2.4. Closely Related Work. During the preparation of this manuscript, two papers appeared which also
adopt flow matching for learning generative models for discrete distributions. The paper [SJW+24] employs
the parametric Dirichlet distribution on the probability simplex [Fer73, JK77, Ait82] as intermediate condi-
tional distributions in a flow matching approach. A similarity to our method is the use of infinite transport
time, which achieves favorable scaling in the regime of many classes. We get back to this paper for a more
detailed comparison in Section 3.3.4.

The second paper [DKP+24] essentially takes up our approach [BGAS24] except for using geodesics with
respect to the Riemannian connection rather than the e-connection, corresponding to α = 0 and α = 1 in
the family of α-connections, respectively. As explained in [ÅPSS17, Lemma 1] by virtue of the sphere map
[ÅPSS17, Def. 1] as isometry, the former geodesics correspond to the geodesics (great circles) on the sphere
with radius 2, restricted to the intersection with the open positive orthant. The authors of [DKP+24] argue
that their choice avoids numerical instability at the boundary of the manifold, which is true when working on
the sphere. But this issue does not exist either on the simplex when proper geometric numerical integration
schemes are employed [ZSPS20].

Possible drawbacks when working on the sphere are not addressed in [DKP+24]. The boundary of the
manifold is reached along geodesics paths in finite time and samples generated by a learned generative model
may potentially leave the manifold. This cannot occur when working with e-geodesics which constitute
a first-order approximation of the Riemannian geodesics [ÅPSS17, Prop. 3], and with the corresponding
exponential map whose domain is the entire tangent space. In this sense, the simplex equipped with both the
Fisher-Rao metric and the e-connection behaves effectively like a complete manifold, even though it is not
complete (e.g. closed) mathematically. This is quite convenient for both numerical inference and learning.

The authors of [DKP+24] also claim ‘to leverage Riemannian optimal transport’ for improving the train-
ing dynamics. From the mathematical viewpoint, the presentation of this aspect is not made sufficiently
explicit and the pertinent literature is ignored. Besides standard textbooks about optimal transport [Vil09,
San15], we refer to [LM18] for a thorough study of the geometry on the simplex induced by the Wasserstein
distance. In fact, the ‘natural gradient’ descent form presented as Equation (8) in [DKP+24, Prop. 1] is
closely related to Equation (15) in [LM18], and the difference to the Fisher-Rao geometry is pointed out as
Remark 2 in [LM18].

Finally, we refer to another line of research concerned with the approximation of discrete probability
distributions by continuous distributions, called dequantization [UML13, TvdOB16, DSDB17, SKCK17,
HCS+19]. A dequantization approach for general discrete data, i.e. similar in scope to our approach, was
recently proposed by [CAN22]. We get back to this paper in Section 3.7 and provide a detailed comparison
by characterizing our approach as dequantization procedure and pointing out differences. In particular, we
indicate that a key component of the approach [CAN22], learning an embedding of class configurations, can
be replicated using our approach, by defining an extended payoff function of the generative assignment flow
approach.

1.2.5. Contribution: Summary. Summing up, the generative model introduced in this paper seamlessly
combines a flow-matching approach with a Riemannian geometric structure tailored to represent discrete
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distributions and to generate discrete and categorial data. A preliminary announcement of our approach is
[BGAS24]. The present paper considerably elaborates this work regarding the presentation of the approach,
mathematical details, experiments and discussion of closely related work.

1.3. Organization. Section 2 fixes notation, summarizes the assignment flow approach and the embedding
into the meta-simplex (1.4). The core Section 3 introduces and details our approach. The flow-matching
approach is described in Section 3.3 and how it relates to the recent work [LCBH+23, CL23] which inspired
the training component of our approach. Section 3.5 details the particular geometric integration used in all
experiments, for computing the assignment flow withing the framework worked out by [ZSPS20]. Section
3.6 explains how the trained generative model is evaluated for computing the likelihoods of a novel unseen
data points. A range of experimental results are presented and discussed in Section 4. We conclude in Section
5.

2. BACKGROUND

2.1. Assignment Flows. Let (X, d) denote a metric space and Xm = {(x1, y1), . . . , (xm, ym)} given la-
beled data: each sample indexed by k ∈ [m],

xk ∈ Xn, xk = {xk1, . . . , xkn}, xki ∈ X, i ∈ V(G) = [n], k ∈ [m] (2.1)

comprises data points xki observed at vertices i ∈ V = V(G) of an underlying graph G = (V, E), that carry
the label yi ∈ [c] for some given number c ∈ N of class labels. Assignment flows [ÅPSS17, Sch20] denote
a class of dynamical systems for the assignment of labels to data points x = (x1, . . . , xn),

[c] ∋ yi 7→ xi ∈ X, i ∈ [n], (2.2)

called labeling of x. Denote by

Sc := ∆̊c = {p ∈ Rc : pj > 0, ⟨1c, p⟩ = 1, ∀j ∈ [c]} (2.3)

the relative interior of the probability simplex which, equipped with the Fisher-Rao metric

gp(u, v) := ⟨u,Diag(p)−1v⟩, u, v ∈ T0, p ∈ Sc (2.4a)

T0 := T0Sc := {v ∈ Rc : ⟨1c, v⟩ = 0} (2.4b)

becomes the Riemannian manifold (Sc, g) with trivial tangent bundle TSc = Sc × T0. Corresponding to the
vertices V of the underlying graph G, we define the product manifold

W := Sc × · · · × Sc, (n = |V| factors) (2.5a)

T0 := T0W := T0 × · · · × T0, (n = |V| factors) (2.5b)

with points denoted by

W ∋W = (W1, . . . ,Wn)
⊤ ∈ Rn×c> , Wi ∈ Sc, i ∈ [n] (2.6a)

T0 ∋ V = (V1, . . . , Vn)
⊤ ∈ Rn×c, Vi ∈ T0, i ∈ [n]. (2.6b)

Specifically, we denote by

1W = (1S , . . . ,1S)
⊤, 1S :=

1

c
1c ∈ Sc (2.7)

the barycenter of W , where 1S is the barycenter of Sc defined by (2.3). The orthogonal projections onto T0
and T0, respectively, are denoted by

π0 : Rc → T0, π0 := Ic − 1c1
⊤
S , (2.8a)

Π0 : Rn×c → T0, Π0U := (π0U1, . . . , π0Un)
⊤. (2.8b)
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W equipped with the Fisher-Rao product metric

gW (U, V ) =
∑
i∈[n]

gWi(Ui, Vi), (2.9)

where the right-hand side is defined by (2.4a), becomes the Riemannian manifold (W, g) called assignment
manifold, with trivial tangent bundle TW = W×T0. Assignment flows are dynamical systems of the general
form

Ẇ (t) = RW (t)

[
Fθ

(
W (t)

)]
, W (0) =W0 ∈ W, (assignment flow) (2.10)

where

Fθ : W → Rn×c (2.11)

denotes an arbitrary function with parameters θ. The linear mapping RW acts row-wise by

RW [Fθ] :=
(
. . . , RWiFθ,i, . . .

)⊤ (2.12a)

RWiFθ,i =
(
Diag(Wi)−WiW

⊤
i

)
Fθ,i, Wi ∈ Sc, Fθ,i ∈ Rc, i ∈ [n]. (2.12b)

Since the range R(RWi) = T0 for any Wi ∈ Sc, the assignment flow (2.10) is well-defined. The data point
x = (x1, . . . , xn) ∈ Xn to be labeled, is encoded by the initial point W0 in (2.10). The label assignment
(2.2) is accomplished by solving the assignment flow equation (2.10), since

lim
t→∞

Wi(t) = eyi , yi ∈ [c], ∀i ∈ [n], (2.13)

where eyi = (0, . . . , 0, 1, 0, . . . , 0)⊤ ∈ {0, 1}c denotes the unit vector with a single entry 1 at the position
yi, corresponding to the assignment of the label yi to the component xi of x at vertex i ∈ [n].

Assignment flows have been introduced in [ÅPSS17] with basic properties (well-posedness, convergence)
established in [ZZS22] under suitable assumotions. A wide range of efficient geometric integration schemes
exist for computing W (t) [ZSPS20] (see also Section 3.5 below).

We conclude this section by collecting formulas required for the specification of e-geodesic flows in
subsequent sections. We refer to [AN00] for more details on information geometry. The exponential map
with respect to the e-connection reads

Expp(v) =
p · e

v
p

⟨p, e p
v ⟩
, p ∈ Sc, v ∈ T0, (2.14)

where both the multiplication · and the exponential function apply componentwise. We define the lifting map
[ÅPSS17]

expp : T0 → Sc, p ∈ Sc, (2.15a)

expp := Expp ◦Rp. (lifting map) (2.15b)

Both mappings (2.14) and (2.15) extend factor-wise to the product space T0 given by (2.5b), analogous to
(2.12). We denote by

P(W) (2.16)

the set of probability measures supported on the assignment manifold W .
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2.2. Meta-Simplex Flow Embedding. The set of categorial distribution represented by the assignment
manifold W (2.5a) only forms the small subset of fully factorized distributions among the set of all categorial
distributions of c labels on n vertices, given by the meta-simplex1

SN := ∆̊N =
{
p ∈ RN : pj > 0, ⟨1N , p⟩ = 1, ∀j ∈ [N ]

}
with N = cn. (2.17)

Every extreme point of the closure ∆N = SN is a unit vector ej , j ∈ [N ] which encodes a single labeling on
the entire graph. Rather than using j ∈ [N ], it will be convenient to enumerate and index the combinatorially
large number N = cn of all labelings by the multi-indices

α ∈ [c]n, α = (α1, . . . , αn), αi ∈ [c], i ∈ [n]. (2.18)

Thus, any α is a label configuration which indexes an extreme point eα ∈ ∆N of the meta-simplex (unit
vector, discrete Dirac measure) and corresponds to a hard category or label assignment (2.2) in terms of a
realization of each discrete random variable y1, . . . , yn. The components of a point p ∈ SN in (2.17) are
indexed by α as well, and we will use the notations

pα := p(α) = p(α1, . . . , αn) = Pr(y = α), α ∈ [c]n. (2.19)

A key component of our approach will be the embedding of the assignment manifold W ↪→ SN of the
assignment manifold (2.5a) into the meta-simplex (2.17). The embedding map

T : W → T = T (W) ⊂ SN , T (W )α :=
∏
i∈[n]

Wi,αi , α ∈ [c]n (2.20)

as well as the map

Q : Rn×c → RN , Q : T0W → T0SN , (QV )α :=
∑
i∈[n]

Vi,αi , α ∈ [c]n (2.21)

which will later on play the role corresponding to T for tangent vectors, have been introduced and studied
in [BSGA+23, BCA+24]. Every point W ∈ W on the assignment manifold is represented by the com-
binatorially large vector T (W ) with N = cn components T (W )α, consisting of monomials of degree n
in the variables Wi,αi ∈ (0, 1). A labeling determined by the assignment flow by (2.13) corresponds to
limt→∞ T

(
W (t)

)
= T (W ) = eα with exactly one single non-zero component T (W )α = 1.

Example 2.1. Consider the case n = c = 2. Then N = 4 and the meta-simplex SN contains all joint
distributions p(y1, y2) of two binary random variables. If p(y1, y2) = W is a point on the assignment
manifold, however, then W = (

( w1
1−w1

)
,
( w2
1−w2

)
)⊤. Embedding this point by (2.20) yields the vector

T (W ) = (w1w2, w1(1 − w2), (1 − w1)w2, (1 − w1)(1 − w2))
⊤, with components T (W )α indexed by

α ∈ {(1, 1), (1, 0), (0, 1), (0, 0)}. Since any distribution on the assignment manifold factorizes, this vector
is determined by merely two parameters. Accordingly, the embedded assignment manifold T = T (W) ⊂
SN is the two-dimensional submanifold depicted by Figure 2.1. From the viewpoint of mathematics, such
embedded sets are known as Segre varieties at the intersection of algebraic geometry and statistics [LSX09,
DSS09].

The following proposition highlights the specific role of the embedded assignment manifold T = T (W) ⊂
SN .

Proposition 2.2 ([BCA+24, Prop. 3.2]). For every W ∈ W , the distribution T (W ) ∈ SN has maximum
entropy

H
(
T (W )

)
= −

∑
α∈[c]n

T (W )α log T (W )α (2.22)

1We call ‘meta-simplex’ both ∆N = SN and the subset SN ⊂ ∆N of distributions with full support.
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FIGURE 2.1. Visualization of T = T (W) ⊂ SN for n = c = 2 (Example 2.1).

among all p ∈ SN subject to the marginal constraint

Mp =W, (2.23a)

where the marginalization map M : RN → Rn×c is given by

(Mp)i,j :=
∑

α∈[c]n : αi=j

pα, ∀(i, j) ∈ [n]× [c]. (2.23b)

Any general distribution p ∈ SN \ T (W) which is not in T (W) has non-maximal entropy and hence
is more informative by encoding additional statistical dependencies [CT06]. Our approach for generating
general distributions p ∈ SN , by combining simple distributions W ∈ W via the embedding (2.20) and
assignment flows (2.10), is introduced in Section 3.

3. APPROACH

This section introduces our generative model for representing and learning a discrete joint distribution
p ∈ SN (recall the notation (2.19)) of label configurations as realizations of discrete random variables
y1, . . . , yn. The approach is illustrated by Figure 3.1.

3.1. Generative Model. The goal is to learn an approximation p̃ ≈ p, as convex combination of factorizing
joint distributions. The submanifold T = T (W) ⊆ SN shown in Figure 2.1 spans all factorizing distribu-
tions T (W ) ∈ SN , which are efficiently represented by their marginals W ∈ W . In particular, since the
dimension of W only grows linearly in the number of variables n, factorizing distributions are tractable to
work with numerically. However, only independent random variables follow factorizing distributions, posing
the question of how coupling can be represented through convex combination.

First, note that T ⊆ SN is not a convex set. Thus, the convex combination of two factorizing distributions
T (W1) and T (W2) generally lies outside of T . In addition, every Dirac measure eα factorizes. Intuitively,
this is because each variable has a deterministic value, independent of all others, and it corresponds to the
fact that (the closure of) T spans all extreme points of SN (see Figure 2.1). Because Dirac measures are
the extreme points of the convex set SN , every joint distribution p̃ ∈ SN representing an arbitrary coupling
between variables can be written as a convex combination of Dirac measures

p̃ =
∑
α∈[c]n

p̃αeα. (3.1)
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FIGURE 3.1. Overview of the approach: The standard Gaussian reference measure
N (0, I) is pushed forward by the exponential map expW from the flat tangent product space
T0 to the assignment manifold W , and further to the meta-simplex SN (2.17) by geomet-
rically integrating the assignment flow (2.10). Since the assignment flow converges to the
extreme points of W which agree with the extreme points of ∆N = SN , an approxima-
tion p̃(α) of a general discrete target measure p(α) underlying given data can be learned by
matching the flow of e-geodesics (corresponding to data samples) and convex combination,
in terms of factorized distributions T (W ), W ∈ W embedded as submanifold of SN (Fig-
ure 2.1) and empirical expectation.

This particular representation of p̃ is intractable, however, because it involves a combinatorial number of
mixture coefficients p̃α. To tame this complexity, we propose to represent mixtures p̃ ∈ SN of factorizing
distributions as measures ν ∈ P(W) by

p̃ = EW∼ν [T (W )]. (3.2)

This shifts the problem of parameterizing useful subsets of combinatorially many mixture coefficients in
(3.1) to the problem of parameterizing a preferably large subset of measures ν ∈ P(W), supported on the
comparatively low-dimensional manifold W . The latter can be achieved by parameterized measure transport
on the assignment manifold. A simple reference measure ν0 ∈ P(W) is chosen and transported by the
assignment flow (2.10), reaching ν = ν∞ for t → ∞. Parameterization of measures νθ ∈ P(W) is thus
achieved by choosing an appropriate class of payoff functions Fθ : W → Rn×c driving the assignment flow
(2.10).

Note that, while the support of p̃ in (3.1) was directly associated with the number of mixture coefficients,
the complexity of representing p̃ via the ansatz (3.2) is no longer associated with its support. For example,
the simplest instance of (3.2), choosing Fθ ≡ 0, ν = ν0 for a product reference distribution ν0 = ν̂n0 with
mean EWi∼ν̂0 [Wi] = 1Sc , leads to p̃ = 1SN

. This is the uniform distribution over class configurations, which
has full support. To see that ν̂n0 indeed represents 1SN

via (3.2), we show the following lemma.

Lemma 3.1 (nodewise measures). Let ν =
∏
i∈[n] ν̂i for measures ν̂i ∈ P(Sc). Then the joint distribution

represented by the mixture (3.2) reads

p̃ = EW∼ν [T (W )] = T (Ŵ ), Ŵi = EWi∼ν̃i [Wi], i ∈ [n]. (3.3)
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Proof. Let α ∈ [c]n be an arbitrary multi-index. Since ν factorizes in the described manner, W ∼ ν is
independently distributed on each node which implies

p̃α = EW∼ν [T (W )α] = EW∼ν

[ ∏
i∈[n]

Wi,αi

]
=

∏
i∈[n]

EW∼ν̃i [Wi,αi ] = T (Ŵ )α. (3.4)

□

Lemma 3.1 shows that, if ν is independent on every node, then p̃ ∈ T . In the following, the reference
measure ν0 will have this independence property, which illustrates that coupling between variables, repre-
sented in the joint distribution p̃, is necessarily induced by interaction between node states over the course
of integrating the assignment flow.

In practice, the target distribution p is unknown and only independently drawn training samples β ∼ p
are available. After choosing a class of payoff functions Fθ, the task is to learn parameters θ such that
p̃ = EW∼νθ [T (W )] approximates the empirical distribution of samples. To this end, we identify samples β
with the corresponding extremal points Meβ ∈ W (Section 3.2) and use flow matching on W to learn θ in a
numerically stable and efficient way (Section 3.3).

After learning has converged, new samples from p̃ ≈ p can be drawn by a two-stage process. First, an
initialization W0 ∼ ν0 is drawn and evolved over time W (t) ∈ W by following the learned assignment flow
until either the desired time tmax is reached, or W (t) approaches an extreme point of W . The new data is
subsequently drawn from the factorizing distribution T (W (tmax)). At extreme points Meβ′ , this distribu-
tion is a Dirac measure and sampling from it always yields β′. Finally, we specify the geometric integration
method that we employed for the discretization of our time-continuous generative model in numerical exper-
iments (Section 3.5), and the computation of the likelihood p̃(α) of arbitrary label configurations using the
learned generative model (Section 3.6).

3.2. Representation of Labelings as Training Data. Our approach to training the generative model, to be
introduced in Section 3.3, utilizes labelings as training data of the form

W ∈ W, W i = eαi , αi ∈ [c], ∀i ∈ [n]. (3.5)

Any such point W assigns a label (category) αi to each vertex i ∈ V in terms of a corresponding unit vector
eαi ∈ {0, 1}c. The flow-matching criterion, specified in the following section, is optimized to find θ such
that Fθ drives the assignment flow to labelings in the limit limt→∞W (t) = W . In practice, the assignment
flow is integrated up to a sufficiently large point of time

tmax > 0 (3.6)

followed by trivial rounding of Wi(tmax) 7→ eαi at every vertex i.

3.3. Riemannian Flow Matching.

3.3.1. Training Criterion. This section details the approach schematically depicted by Figure 3.1. In the
following, β ∼ p denotes training labeling configurations drawn from the unknown underlying discrete joint
data distribution p. β corresponds to the Dirac measure eβ ∈ SN (extreme point) of the meta-simplex SN
and to a corresponding point W β =Meβ ∈W to which the assignment flow (2.10) may converge.

The idea of flow matching is to directly fit the model vector field, in our case the assignment flow vector
field (2.10),

Vθ(W, t) := RW [Fθ(W, t)], (3.7)
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to a vector field whose flow realizes a desired measure transport. Let p0 ∈ P(W) be a simple reference
measure and define conditional probability paths pt(W |β) with the properties

p0(W |β) := p0(W ) (3.8a)

p∞(W |β) := lim
t→∞

pt(W |β) = δWβ
(W ) (3.8b)

for all β ∈ [c]n. Then the marginal probability path

pt(W ) = Eβ∼p[pt(W |β)] (3.9)

represents the target data distribution p in the limit t→ ∞ by

p∞(W ) := lim
t→∞

pt(W ), EW∼p∞ [T (W )] = Eβ∼p[eβ] = p. (3.10)

In principle, we can now define a vector field ut : W → T which generates the path pt in the sense that the
flow of ut pushes forward p0 to pt for all times t ≥ 0. Let ρ ∈ P([0,∞)) be a distribution with full support
on the non-negative time axis. Regression of the assignment flow vector field (3.7), Vθ(·, t) : W → T0, with
respect to ut, amounts to minimizing the Riemannian flow matching criterion

LRFM(θ) = Et∼ρ,W∼pt(W )

[∥∥ut(W )− Vθ(W, t)
∥∥2
W

]
. (3.11)

In this form, flow matching is intractable, because we do not have access to the required field ut. However,
since we are at liberty to define conditional paths that are convenient within the constraints (3.8), we can
choose pt(·|β) that are generated by conditional vector fields ut(·|β) with known form. The key insight in
[CL23], based on [LCBH+23] and provided that each pt(·|β) is generated by ut(·|β), is that the loss function
(3.11) has the same gradient with respect to θ as the Riemannian conditional flow matching criterion

LRCFM(θ) = Et∼ρ,β∼p,W∼pt(·|β)

[∥∥ut(W |β)− Vθ(W, t)
∥∥2
W

]
(3.12a)

(3.7)
= Et∼ρ,β∼p,W∼pt(·|β)

[∥∥ut(W |β)−RW [Fθ(W, t)]
∥∥2
W

]
. (3.12b)

By contrast to (3.11), conditional vector fields ut(W |β) generating a path pt(W |β) with the required prop-
erties (3.8) can be specified in closed form (cf. Proposition 3.17 below), and the conditional loss function
(3.12) can be evaluated efficiently. Ultimately, by minimizing (3.12), the measure νt generated from the
reference measure ν0 = p0 by the assignment flow vector field RW [Fθ(W, t)] approximates p∞ in the limit
t→ ∞, which represents the unknown data distribution p through (3.10).

3.3.2. Construction of Conditional Fields. Let

N0(V ) := N (V ; 0,Π0) (3.13)

denote the standard Gaussian centered in the tangent space at 0 ∈ T0, with the orthogonal projection (2.8b)
respresenting the identity map on T0 ⊂ Rn×c. Pushing forward N0 by the lifting map (2.15) at the barycenter
yields a simple reference distribution

p0 = (exp1W )♯N0 ∈ P(W). (3.14)

The distribution (3.14) is simple in the sense that it is easy to draw samples and the conditions of Lemma 3.1
are satisfied; in particular, p0 factorizes node-wise. For each β ∈ [c]n and a rate parameter λ > 0, define the
probability path

t 7→ Nt,β := N (·; tλVβ,Π0) ∈ P(T ), Vβ := Π0W β, (3.15)

and lift it to W , defining
pt(·|β) := (exp1W )♯Nt,β. (3.16)
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The parameter λ controls the rate at which pt(·|β) moves probability mass closer to W β . Small values of λ
move the mass slowly; this is useful in settings with many labels c ≫ 1, enabling the process to make class
decisions during a longer time period. Figure 3.2 illustrates quantitatively the influence of λ.
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FIGURE 3.2. Influence of the parameter λ controlling in (3.15) and (3.19), respectively, the
rate of assignment of mass of the pushforward probability measure (3.16) to a target label,
depending on the number c of labels (classes, categories).

The following proposition makes explicit the conditional vector field that generates (3.16) and hence
defines the training objective function (3.12). Recall the notation of Section 2.2 and the first paragraph of
Section 3.3.1 explaining the one-to-one correspondence between a labelling configuration β, the correspond-
ing Dirac measure eβ ∈ SN of the meta simplex, and the corresponding point W β ∈W of the closure of the
assignment manifold.

Proposition 3.2 (conditional vector fields). The probability paths defined in (3.16) are generated through
the smooth flow

ψ := ψ(·|W β) : R≥0 × T0 → W, (3.17a)

ψt(V ) = ψt
(
V |β

)
= exp1W (V + tλVβ). (3.17b)

It is invertible and has the smooth inverse

ψ−1
t (W ) := ψ−1

t (W |β) = exp−1
1W

(W )− tλVβ. (3.18)

In particular, the conditional vector field that generates (3.16) is given by

ut(W |β) = RW [λVβ]. (3.19)

Proof. Since Vβ does not depend on V , the map V 7→ V + λtλVβ is affine. Hence, Eq. (3.17) conforms to
(3.16), because affine transformations of normal distributions are again normal distributions. The mapping
exp1W (·) : W → T0 is a diffeomorphism. Consequently, the inverse of (3.17) can be computed from

Wt := ψt(V ) = exp1W

(
V + tλVβ

)
(3.20a)

⇔ ψ−1
t (Wt) = V = exp−1

1W
(Wt)− tλVβ, (3.20b)

which verifies (3.18). Recall that the conditional flow is determined by the conditional vector field through
the ODE

d

dt
ψt
(
V
)
= ut

(
ψt(V )|β

)
, ψ0(V ) = ψ0

(
V |β

)
= V. (3.21)
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Therefore the conditional vector field can be calculated using

ut(W |W β) =
d

dt
ψt
(
ψ−1
t (W )

)
. (3.22)

Computing the time derivative of the conditional flow

d

dt
ψt(V ) = Rψt(V )[λVβ], (3.23)

and inserting (3.23) and (3.18) in (3.22) yields (3.19). □

Proposition 3.3 (conditional path constraints). The conditional probability paths pt(·|β) defined by (3.16)
satisfy the constraints (3.8).

Proof. Equation (3.8a) is immediate due to (3.14) and (3.16). It remains to show that

lim
t→∞

pt(·|β) = lim
t→∞

(ψt)♯p0 = δWβ
(·). (3.24)

To this end, we demonstrate that every marginal of the conditional probability path (3.24) converges to a
Dirac measure supported on the assignment vector corresponding to the labeling configuration β, i.e.

lim
t→∞

pi;t(·|β) = lim
t→∞

(ψt;i)♯p0;i = δWβ;i
(·), i ∈ [n], (3.25)

where p0;i, i ∈ [n] denote the marginals of p0 given by (3.14) and ψt;i(Vi) = exp1S (Vi + tλVβ;i) the
marginal transformations (3.17).

First, we observe that by fixing an orthonormal basis B of T0, every marginal p0;i of (3.14) with Gauss-
ian N0 defined by (3.13), can be expressed as the lifted image measure of a standard normal distribution
N
(
0c−1, Ic−1

)
on Rc−1 with respect to the basis B,

p0;i = (exp1S )♯B♯N
(
·; 0c−1, Ic−1

)
= (exp1S )♯N (·; 0c, π0), (3.26)

since BB⊤ = π0. Consequently, by Proposition 3.2,

pi;t(·|β) =
(
ψt;i

)
♯
N (·; 0c, π0) (3.27)

and hence using the change-of-variables formula and (3.20b), for any S ∈ Sc,
pi;t(S|β) = N

(
exp−1

1S
(S)− tλVβ;i; 0c, π0

)
|det dψ−1

t;i |. (3.28)

Equation (3.18) shows that the differential dψ−1
t;i does not depend on t. Neither does the normalizing factor

of the normal distribution, due to the covariance matrix π0 = idT0Sc . Consequently, since ψ−1
t;i maps to T0Sc,

pS;t(S|β) ∝ exp
(
− 1

2

〈
exp−1

1S
(S)− tλVβ;i, π0

(
exp−1

1S
(S)− tλVβ;i

)〉)
(3.29a)

= exp
(
− 1

2

〈
exp−1

1S
(S)− tλVβ;i,

(
exp−1

1S
(S)− tλVβ;i

)〉)
→ 0 as t→ ∞, (3.29b)

for any S ̸= W β;i ∈ Sc and i ∈ [n], due to the choice (3.15) of the tangent vector Vβ . We conclude that the
image measure p∞;i(·|β) is a Dirac measure concentrated on W β;i. □

On T , the path Nt is generated by the constant vector field V 7→ λVβ given by (3.15). The related
vector field on W , which generates the path (3.16), is given by (3.19). Comparing the shape of this field to
(2.10) makes clear that assignment flows are natural candidate dynamics for matching conditional paths of
the described form. The Riemannian conditional flow matching objective (3.12) consequently reads

LRCFM(θ) = Et∼ρ,β∼p,W∼pt(·|β)

[∥∥RW [λVβ − Fθ(W, t)]
∥∥2
W

]
. (3.30)
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We point out that this criterion is ‘simulation free’, i.e. no integration of the assignment flow is required
for loss evaluation, which makes training efficient.

Our approach (3.30) constitutes a novel instance of the flow-matching approach to generative modeling,
introduced by [LCBH+23] and recently extended to Riemannian manifolds by [CL23]. This instance uses
the assignment manifold (2.5a) and the corresponding Riemannian flow (2.10), along with the meta-simplex
embedding (2.20), to devise a generative model whose underlying information geometry tailors the model to
the representation and learning of discrete joint probability distributions.

3.3.3. Infinite Integration Time. A notable difference between our approach and previous Riemannian flow
matching methods is that the target distribution is reached for t → ∞ rather than after finite time. This
corresponds to the fact that e-geodesics do not reach boundary points of W after finite time and avoids two
problems faced in prior work.

First, unlike the preliminary version presented in [BGAS24], data points β ∈ [c]n do not need to be
smoothed in order to present targets in the interior of W . Instead, we can directly approach extreme points
W β ∈ W , even though they are at infinity in the tangent space T at 1W . Second, by not moving all mass of
the reference distribution (close) to W β in finite time, we avoid a pathological behavior which can arise in
flow matching on the simplex. Denote by

rβ =
{
W ∈ W : βi ∈ argmax

j∈[c]
Wi,j , ∀i ∈ [n]

}
(3.31)

the subset of points in W which assign their largest probability to the labels β. [SJW+24, Proposition 1]
lays out that moving all mass of the reference distribution (close) to W β in finite time forces the model to
make class decisions very early because the probability of rβ under pt(·|β) increases too quickly. The effect
is exacerbated by increasing the number of classes c that the model is asked to discriminate between.

However, by opting for large integration time t → ∞ and a corresponding construction (3.16) of con-
ditional probability paths, our approach is able to scale to many classes c ≫ 1, avoiding the pathology
described in [SJW+24, Proposition 1]. Formally, this is because pt(·|β) defined in (3.16) has full support
on W for every t ≥ 0. In practice, the parameter λ in (3.15) can be used to control the speed at which the
probability of rβ under pt(·|β) increases, allowing the model to make class decisions gradually over time.

Figure 4.5 (page 26) displays probability density paths for illustration. The corresponding impact on
model accuracy is quantitatively shown in Figure 4.1 (page 22), with experimental details elaborated in
Section 4.1.

3.3.4. Relation to Dirichlet Flow Matching. The construction of [SJW+24] specifically addresses patholog-
ical behavior of flow matching on the simplex, by choosing conditional probability paths pt(·|β) as paths of
Dirichlet distributions. They demonstrate that this approach scales to at least c = 160 classes, by allowing
the model to make class decisions gradually over time. However, the explicit definition of pt(·|β) as paths
of Dirichlet distributions makes it non-trivial to find corresponding vector fields ut(·|β) for flow matching,
which leads them to make an ansatz for fields which move mass along straight lines in the ambient Euclidean
space in which the probability simplex is embedded.

While we also make an explicit choice for pt(·|β) in (3.16), our construction is notably simpler than the
approach of [SJW+24], allowing to easily compute the vector fields ut(·|β) by pushforward (Proposition
3.2). The resulting flow moves mass along e-geodesics on W , which is much more natural with respect to
the information geometry of discrete probability distributions. To illustrate this point, consider a straight
path p̂(t) ∈ Rn with direction d

dt p̂(t) = v ∈ Rn at all times t. The trajectory p̂(t) is generated by maximizing
⟨v, p̂⟩ along its gradient direction. On W , the quantity ⟨Vβ,W ⟩ can be interpreted as correlation between
W ∈ W and the direction Vβ . The Riemannian gradient of this correlation with respect to the product
Fisher-Rao geometry on W is RW [Vβ], i.e. precisely the direction of the conditional vector field (3.19).
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3.4. Learning Interaction between Simplices. Our prior work [BCA+24] has studied the relationship be-
tween assignment flows on the product manifold W and replicator dynamics on the meta-simplex SN . We
now use core results of [BCA+24] to derive the flow matching approach of Section 3.3 from first princi-
ples of flow matching in SN . This demonstrates, in particular, that the proposed approach is suitable for
structured prediction settings, in which multiple coupled random variables are of interest.

The result is surprising in the sense that direct flow matching of joint distributions in SN is intractable due
to the combinatorial dimension N = cn. However, by leveraging the special position of the submanifold
T (Figure 2.1) and compatibility of assignment flows with its geometry, we show that our construction can
effectively break down combinatorial complexity and define a numerically tractable method.

The map T : W → SN defined in (2.20) associates a (marginal) distribution of n discrete random vari-
ables W ∈ W with a factorizing joint distribution T (W ) ∈ SN . Define with slight abuse of notation2 the
orthogonal projection

π0 : RN → T0SN (3.32)

and formally denote the scaled standard normal distribution on T0SN with variance cn−1 by

N SN
0 = (

√
cn−1π0)♯N (0, IN ) = N (0, cn−1π0π

⊤
0 ) = N (0, cn−1π0). (3.33)

Analogous to the construction of conditional measures in Section 3.3.2, we define the path of conditional
measures

N SN
t (·|β) = N (·; tcn−1λπ0eβ, c

n−1π0) (3.34)

given a labeling β ∈ [c]n and a rate parameter λ > 0, scaled by the constant cn−1. It follows from Proposi-
tion 3.3 that

pSN
t (·|β) = (exp1SN

)♯N SN
t (·|β) (3.35)

satisfies the conditions (3.8) on SN and is thus suitable for flow matching on SN with reference distribution
p0 = N SN

0 . Formally, the Riemannian conditional flow matching criterion analogous to (3.30) reads

LSN
RCFM(θ) = E

t∼ρ,β∼p,q∼pSN
t (·|β)

[∥∥Rq[λπ0eβ − fθ(q, t)]
∥∥2
w

]
(3.36)

for a payoff function fθ : SN × [0,∞) → T0SN . The task of minimizing (3.36) as written is numerically
intractable, because we are not able to easily represent even general points q ∈ SN \ T in the complement
of the embedded assignment manifold T = T (W) given by (2.20). To break down this complexity, we will
define a projection onto T by using the lifting map lemma [BCA+24, Lemma 3.3], which states

exp1SN
(QV ) = T

(
exp1W (V )

)
(3.37)

for all tangent vectors V ∈ T0W , with the mappings T and Q defined by (2.20) and (2.21). We start by an
orthogonal projection T0SN → imgQ ∩ T0SN .

Lemma 3.4 (orthogonal projection onto imgQ ∩ T0SN ). The orthogonal projection proj0 of tangent
vectors in T0SN to the subspace imgQ ∩ T0SN reads

proj0 : T0SN → imgQ ∩ T0SN , proj0 v := QcΠ0Qc
⊤v for v ∈ T0SN (3.38)

in terms of the linear operator

Qc :=
1√
cn−1

Q. (3.39)

2π0 is defined by (2.8a) as orthogonal projection onto the tangent space T0Sc of the single simplex Sc with trivial tangent bundle
Sc × T0. Here, to simplify notation, we overload π0 to denote analogously the orthogonal projection onto the tangent space T0SN .
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Proof. By [BSS21, Lemma 4] we have Q⊤QV = cn−1V for all V ∈ T0W . Thus, Qc has the property

Qc
⊤QcV = V, for all V ∈ T0W. (3.40)

To show that (3.38) indeed defines orthogonal projection onto imgQ ∩ T0SN , note that

QcΠ0 = π0Qc (3.41)

by [BCA+24, Lemma A.3] and accordingly

Qc
⊤π0 = (π0Qc)

⊤ = (QcΠ0)
⊤ = Π0Qc

⊤ (3.42)

by using the symmetry of Π0 and π0. We can use this to show img proj0 ⊆ imgQ ∩ T0SN because for any
x ∈ Rn×c, we have

QcΠ0x ∈ imgQ and QcΠ0x
(3.41)
= π0Qcx ∈ T0SN . (3.43)

Now let v ∈ T0SN and y ∈ imgQ ∩ T0SN be arbitrary. Then y can be written as y = Qcy
′ and we have

⟨v − proj0 v, y⟩ = ⟨v −QcΠ0Qc
⊤v,Qcy

′⟩ = ⟨Qc⊤v −Qc
⊤QcΠ0Qc

⊤v, y′⟩ (3.44a)
(3.40)
= ⟨Qc⊤v −Π0Qc

⊤v, y′⟩ (3.42)
= ⟨Qc⊤v −Qc

⊤π0v, y
′⟩ (3.44b)

= 0, (3.44c)

which shows that proj0 projects orthogonally. □

Since (3.37) ensures that exp1SN
(imgQ) ⊆ T , we can now define the projection

projT := exp1SN
◦proj0 ◦ exp−1

1SN
: SN → T . (3.45)

Under this projection, the conditional measures pSN
t (·|β) ∈ P(SN ) precisely induce the conditional prob-

ability paths pt(·|β) ∈ P(W) defined in (3.16). Note that every extreme point of SN lies in (the closure
of) T . Thus, projecting to T preserves the endpoints δeβ reached by the conditional distributions (3.35) in
the limit t → ∞. In particular, the projection transforms the intractable conditional flow matching criterion
(3.36) on SN into the numerically tractable criterion (3.30).

Theorem 3.5 (projected flow matching on SN ). For any β ∈ [c]n, the pushforward of the conditional
measure pSN

t (·|β) defined in (3.35) under the projection projT : SN → T defined in (3.45) is

(projT )♯p
SN
t (·|β) = T♯pt(·|β) (3.46)

with pt(·|β) ∈ P(W) defined in (3.16) and the embedding map T given by (2.20). Furthermore, the flow
matching criterion on T , induced by the conditional paths (3.46), reads

LT
RCFM(θ) = E

t∼ρ,β∼p,q∼(projT )♯p
SN
t (·|β)

[∥∥Rq[λπ0eβ − f̃θ(q, t)]
∥∥2
w

]
(3.47)

and, using the ansatz f̃θ = Q ◦ Fθ ◦M with Q and M defined by (2.21) and (2.23b) , (3.47) is equal to the
criterion (3.30) for flow matching assignment flows on W .
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Proof. We use the representation of proj0 (Lemma 3.4) to compute the pushforward (3.46).

(projT )♯p
SN
t (·|β) (3.45)

= (exp1SN
◦ proj0 ◦ exp−1

1SN
)♯p

SN
t (·|β) (3.48a)

(3.35)
= (exp1SN

◦ proj0)♯N SN
t (·|β) (3.48b)

(3.38)
= (exp1SN

◦QcΠ0Qc
⊤)♯N SN

t (·|β) (3.48c)

(3.34)
= (exp1SN

◦QcΠ0Qc
⊤)♯N (·; tcn−1λπ0eβ, c

n−1π0) (3.48d)

= (exp1SN
)♯N (·; tcn−1λQcΠ0Qc

⊤π0eβ, c
n−1QcΠ0Qc

⊤π0(QcΠ0Qc
⊤)⊤) (3.48e)

(3.39)
(3.42)
= (exp1SN

)♯N (·; tλQΠ0Q
⊤eβ, c

n−1QcΠ0Qc
⊤QcΠ0Qc

⊤) (3.48f)

(3.39)
(3.40)
= (exp1SN

)♯N (·; tλQΠ0Q
⊤eβ, QΠ0Q

⊤) (3.48g)

= (exp1SN
◦Q)♯N (·; tλΠ0Q

⊤eβ,Π0). (3.48h)

By [BCA+24, Lemma 3.4], we have Q⊤eβ =Meβ . Using the shorthand Vβ defined in (3.15) and the lifting
map lemma (3.37), this shows

(projT )♯p
SN
t (·|β) = (exp1SN

◦Q)♯N (·; tλVβ,Π0) (3.49a)

(3.37)
= (T ◦ exp1W )♯N (·; tλVβ,Π0) (3.49b)

(3.15)
= (T ◦ exp1W )♯Nt,β (3.49c)

(3.16)
= T♯pt(·|β) (3.49d)

which is the assertion (3.46).
Returning to (3.49a), we can compute the conditional vector field whose flow produces the path (projT )♯p

SN
t (·|β)

by
uTt (q|β) = d exp1SN

(v)[λQVβ] = Rq[λQVβ] (3.50)

with v = exp−1
1SN

(q) analogous to (3.19). This shows the shape of the flow matching criterion (3.47). It
remains to show that it is equal to (3.30).

Substituting the ansatz f̃θ = Q ◦ Fθ ◦M into this criterion gives

LT
RCFM = Et∼ρ,β∼p,W∼pt(·|β)

[∥∥RT (W )[λQ(Vβ)− (Q ◦ Fθ)(W, t)]
∥∥2
T (W )

]
. (3.51)

By [BCA+24, Theorem 3.1], T : W → T ⊆ SN defined by (2.20) is a Riemannian isometry. Thus, for any
vector field X : W → T and any W ∈ W , it holds that

⟨RW [X], RW [X]⟩W =
〈
dTW

[
RW [X]

]
, dTW

[
RW [X]

]〉
T (W )

. (3.52)

Furthermore, by [BCA+24, Theorem 3.5], one has

dTW
[
RW [X]

]
= RT (W )[QX]. (3.53)

Taking (3.52) and (3.53) together, (3.51) transforms to

LT
RCFM = Et∼ρ,β∼p,W∼pt(·|β)

[∥∥RW [λVβ − Fθ(W, t)]
∥∥2
W

]
(3.54)

which is (3.30). □
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Theorem 3.5 shows that the constructed flow matching on W , which operates separately on multiple
simplices, is induced by flow matching in the single meta-simplex SN , with conditional distribution paths
and vector fields projected to the submanifold T = T (W). This result provides a geometric justification
for the fact that interaction between simplices is learned through flow matching, even though all conditional
probability paths pt(·|β) used in training can be separately constructed on individual simplices.

3.5. Numerical Flow Integration. We point out again that learning our generative model by Riemannian
flow matching is ’simulation free’: numerical integration is not required since only vector fields have to
be matched which are defined on the tangent bundle of the assignment manifold and on the corresponding
tangent-subspace distribution of the meta simplex (Prop. 3.5), respectively. On the other hand, numerical
integration of the flow is required for evaluating the learned generative model, in order to sample as illustrated
by Figure 1.1, or for likelihood computation (Section 3.6).

Since the flow corresponds to an ODE on a Riemannian manifold, geometric numerical integration utilizes
various representations of the ODE on the tangent bundle in order to apply established methods for numer-
ical integration on Euclidean spaces [HLW06]. In the case of the assignment flow, this has been thoroughly
studied by [ZSPS20] using the extension of the lifting map (2.15) to the product manifold (2.5), regarded
as action of the respective tangent space (regarded as additive abelian Lie group) on the assignment mani-
fold. From the general viewpoint of geometric numerical integration, the resulting schemes for geometric
numerical integration categorize as Runge-Kutta schemes of Munthe-Kaas type [MK99].

Specifically, in this paper, numerical integration was carried out using the classical explicit embedded
Dormand & Prince Runge-Kutta method [DP80] of orders 4 & 5 with stepsize control (cf. [ZSPS20, Section
5.2] and [HNW08, Section II.5]).

3.6. Likelihood Computation. The likelihood of test data under the model distribution p̃ is commonly
used as a surrogate for Kullback-Leibler divergence between p̃ and the true data distribution p, due to the
relationship

KL(p, p̃) = Ep
[
log

p

p̃

]
= −H(p)− Ep[log p̃]. (3.55)

The entropy H(p) is a property of the data distribution, which is not typically known, but can be treated as a
constant which does not depend on the model. For continuous normalizing flows, likelihood under the model
is directly used as a training criterion for this reason. Using the instantaneous change-of-variables formula
[CRBD18]

∂

∂t
log νt(x) = − tr J(x, t), (3.56)

log-likelihood under continuous normalizing flows can, on continuous state spaces, be computed by integrat-
ing (3.56) backward in time. In (3.56), J(x, t) denotes the vector field Jacobian, whose trace is commonly
approximated by using Hutchinson’s estimator [Hut89]

tr J = Ev[⟨v, Jv⟩] (3.57)

with v drawn from a fixed normal or Rademacher distribution. The use of this estimator in the context of
likelihood under continuous normalizing flows was proposed by [GCB+19]. The authors use a single sample
v for each integration of (3.56), which yields an unbiased estimator for log-likelihood of independent test
data. In order to use likelihood as a training criterion, numerical integration of (3.56) is required. This entails
many forward and backward passes through the employed network architecture in order to compute a single
parameter update.

Therefore, we do not use likelihood as a training criterion, opting instead for the simulation-free flow
matching approach of Section 3.3. Since the learned model is still a normalizing flow, (3.56) remains a
useful tool for computing likelihoods under our model. However, because we are modeling discrete data
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while working on continuous state spaces, likelihood of discrete data can not be computed as a point estimate
on W . Further details are provided in Appendix B.

3.7. Dequantization. Approximation of discrete data distributions by continuous distributions has been
studied through the lens of dequantization. Choose a latent space Fn and an embedding of class label
configurations β ∈ [c]n as prototypical points f∗β ∈ Fn. Suppose the choice of these points is fixed before
training and associate disjoint sets Aβ ⊆ Fn with label configurations such that they form a partition of Fn

and f∗β ∈ Aβ . We can then define the continuous surrogate model

ϑ =
∑
β∈[c]n

pβUAβ
∈ P(Fn) (3.58)

which represents p ∈ SN as a mixture of uniform distributions UAβ
, supported on the disjoint subsets Aβ .

The underlying idea is that

Pϑ(Aβ) =
∫
Aβ

ϑ(y)dy = pβ

∫
Aβ

UAβ
(y)dy = pβ (3.59)

due to the disjoint support of mixture components in (3.58). Denote a continuous model distribution by
ν ∈ P(Fn). Using Jensen’s inequality, we find

−H(ϑ)−KL(ϑ, ν) =

∫
ϑ(y) log ν(y)dy =

∑
β∈[c]n

pβ

∫
Aβ

log ν(y)dy (3.60a)

≤
∑
β∈[c]n

pβ log

∫
Aβ

ν(y)dy (3.60b)

= −H(p)−KL(p, q) (3.60c)

for the discrete model distribution q defined by

qβ =

∫
Aβ

ν(y)dy = Pν(Aβ). (3.61)

Thus, fitting ν to ϑ by maximizing log-likelihood of smoothed data drawn from ϑ implicitly minimizes an
upper bound on the relative entropy KL(p, q). In practice, drawing smoothed data from ϱ amounts to adding
noise to the prototypes f∗βk ∈ Fn of discrete data {βk}k∈[m].

The above dequantization approach was first proposed by [TvdOB16]. Their reasoning justifies the pre-
viously known heuristic of adding noise to dequantize data [UML13]. It has thenceforth become common
practice for training normalizing flows as generative models of images [DSDB17, SKCK17] and was gener-
alized to non-uniform noise distributions by [HCS+19]. These authors focus on image data which, although
originally continuous, are only available discretized into 8-bit integer color values for efficient digital stor-
age. In this case, the underlying continuous color imparts a natural structure on the set of discrete classes.
Similar colors are naturally represented as prototypes which are close to each other with respect to some
metric on the feature space Fn.

For the general discrete data considered here, such a structure is not available. As a remedy, [CAN22]
present an approach to learn the embedding jointly with likelihood maximization and defining the partition
of Fn into subsets Aβ through Voronoi tesselation. The rounding model variant (B.1) of our approach can
be seen as dequantization on the space Fn = W with prototypical points f∗β = W β . The sets Aβ generated
by Voronoi tesselation then coincide with the sets rβ defined by (3.31). However, our approach differs
from [CAN22] by using flow matching instead of likelihood-based training and by explicit consideration of
information geometry on W .
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A natural question is whether the ability to learn an embedding of class configurations as prototypical
points f∗β , thereby representing similarity relations between classes, can be replicated in our setting. Indeed,
because points in Sc have a clear interpretation as categorical distributions, it is easy to achieve this goal by
extending the payoff function Fθ of the assignment flow (2.10).

For some L > 0, let E ∈ RL×c be a learnable embedding matrix. The columns of E can be seen
as prototypical points in the Euclidean latent space RL. The action of E on an integer probability vector
ej ∈ Sc precisely selects one of these points, associating it with the class j ∈ [c]. Learning E now allows
to represent relationships between classes in the latent space RL. Let E : Rn×c → Rn×c denote the linear
operator which applies E nodewise. We now choose a parameterized function F̃θ : RL → RL that operates
on RL and define the extended payoff function

Fθ = E⊤ ◦ F̃θ ◦ E : W → Rn×c. (3.62)

4. EXPERIMENTS AND DISCUSSION

As outlined in Section 3, we perform Riemannian flow-matching (3.11) via the conditional objective
(3.30) to learn assignment flows (2.10). These in turn approximate p∞ in the limit t → ∞ and thereby the
unknown data distribution p through (3.10).

4.1. Class Scaling. First, we replicate the experiment of [SJW+24, Figure 4] to verify that our model is
able to make decisions gradually over longer integration time and can scale to many classes c. Details of the
training procedure are relegated to Appendix A.1. For each c, the data distribution is a randomly generated,
factorizing distribution on n = 4 simplices.

Figure 4.1 shows the relative entropy between the learned models (histogram of 512k samples) and the
known target distribution. Our proposed approach is able to outperform our earlier method [BGAS24]
(green) as well as Dirichlet flow matching [SJW+24] (orange) and the linear flow matching baseline (blue)
in terms of scaling to many classes c. In Figure 4.1, the linear flow matching baseline scales better to many
classes than in [SJW+24, Figure 4], but the qualitative statement that linear flow matching is ill-suited to
this end is still supported by our empirical findings. Our preliminary approach [BGAS24] (green) also scales
comparatively well, even outperforming Dirichlet flow matching. Figures 4.5 and 4.6 illustrate probability
paths pt(·|β) for our approach (cf. (3.16)) and Dirichlet flow matching [SJW+24] at different time scales.

A property of assignment flow approaches, possibly linked to observed performance, is to transport prob-
ability mass relative to the underlying Fisher Rao geometry (recall Section 3.3.4). For example, this leads to
little probability mass in regions close to the simplex boundaries (Figure 4.5).

4.2. Generating Image Segmentations. In image segmentation, a joint assignment of classes to pixels is
usually sought conditioned on the pixel values themselves. Here, we instead focus on the unconditional
discrete distribution of segmentations, without regard to the original pixel data. These discrete distributions
are very high-dimensional in general, with N = cn increasing exponentially in the number of pixels.

To this end, we parametrize Fθ by the UNet architecture of [DN21] and train on downsampled segmenta-
tions of Cityscapes [COR+16] images, as well as MNIST [LCB10], regarded as binary c = 2 segmentations
after thresholding continuous pixel values at 0.5. Details of the training procedure are relegated to Appen-
dix A.2.

Figures 4.2 and 4.3 show samples from the learned distribution of binarized MNIST and Cityscapes seg-
mentations respectively, next to the closest training data. This illustrates that our model is able to interpolate
the data distribution, without simply memorizing training data. Additional samples from our Cityscapes
model are shown in Figure 4.4.
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FIGURE 4.1. Relative entropy between learned models (histogram of 512k samples) and a
known, factorizing target distribution on n = 4 simplices with varying number of classes c.
By leveraging information geometry and gradual decision-making over time, our proposed
approach (red) is able to outperform our earlier method [BGAS24] as well as Dirichlet flow
matching [SJW+24] in terms of scaling to many classes c.

4.3. Likelihood Evaluation. We compute the likelihood of test data from the MNIST dataset (binarized by
thresholding) using the method described in Section 3.6. We use 100 priority samples per datum and, as is
common practice for normalizing flows, only a single Hutchinson sample. The result is shown in Table 1,
compared to our earlier approach [BGAS24] (t → 1). For comparison, we show likelihood of MNIST
test data (from the continuous, non-binarized distribution) under several normalizing flow methods from the
literature which were trained using likelihood maximization.

Note that, although much prior work on generative modelling has been applied to continuous gray value
MNIST images, binarization (in our case through thresholding) substantially changes the data distribution.
Thus, likelihood of test data, which is commonly used as a surrogate for relative entropy to the data distribu-
tion in normalizing flows, is not comparable between these methods and ours. In addition, since we do not
use likelihood maximization as a training criterion, it is not to be expected that our model is competitive on
this measure. Still, the results of Table 1 indicate that the proposed model (t→ ∞) fits the binarized MNIST
data distribution better in terms of relative entropy than our previous approach [BGAS24] (t→ 1).

TABLE 1. Likelihood of binarized MNIST test data under our proposed model (t → ∞)
and the earlier version [BGAS24] (t → 1). Both methods are trained by flow matching
rather than likelihood maximization.

Method AF (t→ ∞) AF (t→ 1)

Likelihood (bits / dim) 1.01 ± 0.17 4.05 ± 0.83
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5. CONCLUSION

We introduced a novel generative model for the representation and evaluation of joint probability dis-
tributions of discrete random variables. The approach employs an embedding of the assignment manifold
in the meta-simplex of all joint probability distributions. Corresponding measure transport by randomized
assignment flows approximates joint distributions of discrete random variables in a principled manner. The
approach enables to learn the statistical dependencies of any set of discrete random variables, and using the
resulting model for structured prediction, independent of the area of application.

Inference using the approach is computationally efficient, since sampling can be accomplished by parallel
geometric numerical integration. Training the generative model using given empirical data is computation-
ally efficient, since matching the flow of corresponding e-geodesics is used as training criterion, which does
not require sampling as a subroutine.

Numerical experiments showed superior performance in comparison to recent related work, which we at-
tribute to consistently using the underlying information geometry of assignment flows and the corresponding
measure transport along conditional probability paths. On the other hand, the fact that even our preliminary
approach [BGAS24] can outperform Dirichlet flow matching [SJW+24] with respect to scaling to many
classes in Figure 4.1, is surprising, because the approach [BGAS24] uses a finite integration time and moves
all mass of the reference distribution to a Dirac measure close to W β within this finite time. The core as-
sumptions of [SJW+24, Proposition 1], therefore, apply to this approach, and the fact that it still performs
well empirically suggests that further inquiry into this topic is warranted.

FIGURE 4.2. Comparison of model samples to the closest training data. Left with red bor-
der: samples drawn from our model of the binarized MNIST distribution. Right: training
data closest to the sample in terms of pixel-wise distance.
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FIGURE 4.3. Comparison of model samples to the closest training data. Left with black
border: samples drawn from our model of the Cityscapes segmentation distribution. Right:
training data closest to the sample in terms of pixel-wise distance.

APPENDIX A. EXPERIMENTS: DETAILS

A.1. Details of Class Scaling Experiment. To parameterize Fθ, we use the same convolutional architecture
used in [SJW+24]. We train for 500k steps of the Adam optimizer with constant learning rate 3 · 10−4 and
batch size 128. We reproduce the Dirichlet flow matching results and linear flow matching baseline by using
the code of [SJW+24]. The experiment shown in Figure 4.1 is slightly harder than the version in [SJW+24],
because we limit training to 64k steps at batch size 512 for Dirichlet- and linear flow matching. Accordingly,
both assignment flow methods are trained for 250k steps at batch size 128, such that around 32M data are
seen by each model during training.

A.2. Details of generating Image Segmentation.

A.2.1. Cityscapes Data Preparation. Rather than the original c = 33 classes, we only use the c = 8
classes specified as categories in torchvision. The same subsampling of classes was used in the related work
[HNJ+21]. They additionally perform spatial subsampling to 32 × 64. Instead, we subsample the spatial
dimensions (NEAREST interpolation) to 128× 256.

A.2.2. Cityscapes Training. For the Cityscapes experiment, we employ the UNet architecture of [DN21]
with attention_resolutions (32, 16, 8), channel_mult (1,1,2,3,4), 4 attention heads, 3 blocks and 64 channels.
We trained for 250 epochs using Adam with cosine annealing learning rate scheduler starting at learning rate
0.0003 and batch size 4. The distribution ρ of times t used during training is an exponential distribution with
rate parameter λ = 0.25. For sampling, we integrate up to tmax = 15.



GENERATIVE ASSIGNMENT FLOWS 25

FIGURE 4.4. Left: Samples from our model of the Cityscapes segmentation distribution.
Right with blue border: randomly drawn training data.

A.2.3. Binarized MNIST Data Preparation. We pad the original 28× 28 images with zeros to size 32× 32
to be compatible with spatial downsampling employed by the UNet architecture. Binarization is performed
by pixelwise thresholding at grayvalue 0.5.

A.2.4. Binarized MNIST Training. We modify the same architecture used for Cityscapes to attention_resolutions
(16), channel_mult (1,2,2,2), 4 attention heads, 2 blocks and 32 channels. The same training regimen is used
as for Cityscapes except for an increase in batch size to 256. The distribution ρ of times t used during train-
ing is an exponential distribution with rate parameter λ = 0.5. For sampling, we integrate up to tmax = 10.
In table 1, we use the same UNet architecture and training regimen for the comparison method [BGAS24]
(t→ 1).

APPENDIX B. LIKELIHOOD COMPUTATION: DETAILS

Assume we have learned a probability path νt and a final pushfoward distribution ν∞. In practice, numeri-
cal integration needs to be stopped after a finite time t = tmax, reaching a numerical pushforward distribution
νtmax ≈ ν∞. Drawing samples from p̃ = EW∼νtmax

[T (W )] is a two-stage process: W ∼ νtmax is drawn first,
followed by sampling β ∼ T (W ). Due to the numerical need to stop integration at finite time, T (W ) may in
practice not have fully reached a discrete Dirac distribution. For long sequences of random variables, such
as text or image modalities, this can lead to undesirable noise in the output samples. A way to combat this
numerical problem is by rounding to a Dirac measure before sampling. This procedure can be interpreted
within the framework of dequantization, which we elaborate in Section 3.7.



26 B. BOLL, D. GONZALEZ-ALVARADO, S. PETRA, C. SCHNÖRR

t=0.0 t=0.20 t=0.33 t=0.77

=0.1, t=0.0 =0.1, t=0.20 =0.1, t=0.33 =0.1, t=0.77
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FIGURE 4.5. Plots of conditional densitities pt(·|β) for different points of time t. Darker
colors indicate higher concentration within the densities. From top to bottom: Linear Flow
Matching [SJW+24, Equation 11], the approach [BGAS24, Equation 18], Dirichlet Flow
Matching [SJW+24, Equation 14], our approach (3.16) using two different values of the
rate parameter λ. Note the different time periods t ∈ [0, 0.77] used for the first two and
t ∈ [0, 8] for the latter approaches.
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FIGURE 4.6. Top row: Plots of conditional densitities paths t 7→ pt(·|β) for various models.
Bottom row: Impact of the rate parameter λ of our approach (replication of Figure 3.2 to
ease visual comparison).

In practice, W ∼ νtmax is typically close to a discrete Dirac already, so rounding has little impact on
the represented joint distribution. Nevertheless, the rounding process is formally a different model than
p̃ = EW∼νtmax

[T (W )], which we explicitly distinguish for the purpose of computing likelihoods. Recall the
definition (3.31) of subsets rβ ⊆ W with each W ∈ rβ assigning the largest probability to the labels β. The
points in rβ are also the ones which round to W β

3. Thus, the labeling β ∈ [c]n has likelihood

p̃rβ = EW∼νtmax
[1rβ (W )] = Pνtmax

(rβ) (B.1)

under the rounding model p̃r, with 1rβ denoting the indicator function of rβ . This is numerically similar to
the likelihood under our original model

p̃β = EW∼ν∞ [T (W )β] (B.2)

and matches it in the limit t→ ∞, provided that (almost) every trajectoryW (t) approaches an extreme point
of W under the learned assignment flow dynamics.

We will now devise an importance sampling scheme for efficient and numerically stable approximation of
the integral in (B.1), that analogously applies to (B.2). Let ϱ be a proposal distribution with full support on

3The sets rβ technically overlap on the boundary, but all intersections have measure zero.
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W which has most of its mass concentrated around a point qβ ∈ W close to W β . Then

Pνtmax
(rβ) = EW∼ϱ

[
1rβ (W )

νtmax(W )

ϱ(W )

]
(B.3)

where we assumed that both νtmax and ϱ have densities with respect to the Lebesgue measure and used
again the symbols νtmax and ϱ to denote these densities. The rationale behind this construction is that,
since we learned νtmax to concentrate close to points W β , drawing most samples close to qβ will reduce the
estimator variance compared to sampling (B.1) directly. In high dimensions, the quantities in (B.3) are prone
to numerical underflow, which motivates the transformation

logPνtmax
(rβ) = logEW∼ϱ

[
1rβ (W )

νtmax(W )

ϱ(W )

]
(B.4a)

= logEW∼ϱ
[
exp

(
log 1rβ (W ) + log νtmax(W )− log ϱ(W )

)]
. (B.4b)

After replacing the expectation with a mean over samples drawn from ϱ, we can evaluate (B.4) by leveraging
stable numerical implementations of the logsumexp function.

For every evaluation of the integrand, we evaluate log-likelihood under ϱ in closed form as well as log-
likelihood under νtmax through numerical integration backward in time, leveraging the instantaneous change
of variables (3.56) and Hutchinson’s trace estimator. Note the conventions log 0 = −∞ and exp(−∞) = 0
employed in (B.4). The analogous expression for (B.1) reads

log p̃β = logEW∼ϱ
[
exp

(
log T (W )β + log νtmax(W )− log ϱ(W )

)]
(B.5)

and we can further expand

log T (W )β = log
∏
i∈[n]

Wi,βi =
∑
i∈[n]

logWi,βi (B.6)

to avoid numerical underflow.
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