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(a) recorded frame (b) reconstructed displacement field

Fig. 2. Particle Image Velocimetry (PIV): (a) Detail of an image frame
recorded in a real fluid experiment (see Sect. IV-D), showing particles
(polyglycol diluted in water) in an air flow. The image is 100 px× 100 px in
size, corresponding to 7.5mm×7.5mm in the illuminated plane. The particles
have a diameter of less than 10 µm i.e. less than a pixel in the projection, which
prevents the application of standard differential optical flow techniques. Image
noise level is high. (b) Example of a reconstructed displacement field. Each
arrow describes the motion vector estimated at its origin.

Fig. 3. Estimated displacement field in a real turbulent PIV experiment
(arrows) and some of the adapted correlation windows (represented by ellipse-
shaped level contours). For each measurement, our approach balances the error
caused by a high amount of image noise compared to the supporting region,
and violation of the assumption, that the flow is constant within the window,
such as in the upper left region, where high gradients dominate. In contrast,
windows can be chosen larger in homogeneous regions (right). This spatially-
dependent adaptivity of windows emerges from our variational approach.

Variational approaches based on the linearised optical flow

constraint, originating from the work of Horn and Schunck [4],

have also been applied to measure motion in PIV [5]. The

dense vector field representation allows to incorporate prior

knowledge on the vector field, such as incompressibility,

see e.g. [6], [7]. However, the implied brightness constancy

assumption often does not hold in real PIV data which is taken

into account in [8] by modifying the data term.

In [9], cross-correlation is considered as one of three

similarity measurements between image pairs. Based on this

and additional spatial regularisation, a variational approach

for image registration is formulated and solved using partial

differential equations.

The two-scale approach in [10] combines the advantages of

optical flow based methods and cross-correlation: an optical

flow approach with physically sound regularisation terms,

which penalise large variations in the rotation and divergence

of the flow, is endowed with an additional data term. Similarity

to a coarse vector field originating from a local correlation

approach is enforced. The displacement field estimated using

cross-correlation is used to initialise a variational optical flow

approach in [11]. For a comprehensive synopsis on variational

methods for fluid flow measurement we refer to [12].

Much effort has been put into improving the spatial resolu-

tion of cross-correlation methods [13], [14] by replacing the

fixed square interrogation windows by appropriate alternatives.

The authors of [15] investigate a class of cone-shaped weight-

ing functions and optimise the shape parameters by means of

the frequency-response, however not with respect to a specific

image data set. In [16], [17] the size of square windows is

locally adapted to the signal quality and spatial fluctuations

in the flow. Window adaptation is used in [18] at interfaces

to fixed objects in the scene. The authors of [19] propose a

criterion based on the flow gradients and image quality to

select the optimal shape of an elliptical window. In [20] a

Gaussian weighting function is stretched and rotated along

the measured mean displacement. Gaussian weights are used

both in a local [21] and global context [22] for smoothing the

optical flow constraint, however with isotropic windows of

fixed size common for all positions. In our work, the correla-

tion window is also described by a “soft” Gaussian weighting

function. However, we formulate a sound criterion for the

location-dependent choice of the window shape parameters

by means of an error model function. The window adaptation

consists of finding the window shape which minimises the

predicted measurement error.

Our contribution is a variational formulation for a

correlation-based approach for measuring motion in PIV im-

age pairs. A Gaussian weighting function controls the image

region considered in the displacement estimation. The shape

of the window is controlled by means of a function which

approximates the expected measurement error. Minimisation

leads to the optimal window shape with respect to this error

model. Displacement measurement and window adaptation are

formulated as a pair of interdependent optimisation problems.

It is solved via a multiscale gradient-based algorithm.

This work summarises and extends the results in [23]. An

abridged version was published in [24] with the focus on

image processing. In [25] we investigate our approach from

the applied fluid mechanics point of view.

C. Organisation

In Sect. II we formulate our approach to adaptive fluid flow

measurement as a continuous optimisation problem. Section III

details on the discretisation and the employed optimisation

method. We verify both in the experimental section (Sect. IV)

and conclude in Sect. V.

II. APPROACH

A. Problem Definition

Given a pair of images, g1, g2, defined on the image do-

main Ω ⊂ R
2, we are interested in a vector field u : Ω 7→ R

2
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on the window size by defining the constraint set S :=
{

Σ ∈ S2++

∣

∣λminI � Σ � λmaxI
}

. I denotes the identity ma-

trix of appropriate size and S � T indicates positive semi-

definiteness of T − S for symmetric matrices S, T .

The error model function E(Σ,u, x) is composed of the

following two terms:

a) Homogeneity Term: The first part of the objective (9)

describes the error caused by the violation of the assumption

that the observed motion within the chosen window is homo-

geneous:

Ehomog (Σ,u, x):=

∫

R2

w(y − x,Σ) e(x, y,u) dy (10)

e(x, y,u):=

{

‖u(y)− u(x)‖22 if y ∈ Ω
e2outside otherwise

(11)

The function e(x, y,u) measures the squared Euclidean dis-

tance of u(y) to the displacement in the point of interest,

u(x), while a constant error value is assumed for using regions

outside the image domain Ω. The errors are weighted by the

window function which is parameterised by Σ.

b) Noise Term: The second term in (9) describes the

impact of image sensor noise and unpaired particles on the

accuracy. We define it as

Enoise(Σ)=
σ2

2π
√
detΣ

, (12)

where σ is a parameter which describes the image noise level.

Intuitively spoken, this term describes the expectation that the

error reduces when the measurement support,
∫

w(x,Σ) dx =
2π
√
detΣ increases for larger windows Σ. A more detailed

derivation of this term can be found in the Appendix.

c) Global Window Adaptation: Finally, we extend the

local window estimation to

min
Σ∈S

E(Σ,u) with E(Σ,u) :=

∫

Ω

E(Σ(x),u, x) dx ,

which optimises the window shapes globally in terms of the

matrix-valued function Σ ∈ S .

D. Joint Approach

In Sect. II-B we introduced a motion estimation approach

and presumed that the window parameters are given. In con-

trast, in Sect. II-C we fixed a displacement field and adapted

the correlation windows to it. We describe this chicken-and-

egg-dependency as a mathematically tractable problem:

u
∗ ∈ argmin

u∈U
C(u,Σ∗) and Σ

∗ ∈ arg min
Σ∈S

E(Σ,u∗) (13)

The two optimisation problems have non-linear and non-

convex objective functions each, are interconnected through

the variables Σ
∗ and u

∗, and thus have to be solved jointly.

Note, that C(u,Σ∗) is only minimised with respect to u, but

not Σ∗, as the window shapes should only be steered by the

error model function and not by the correlation measurement.

If image data should be considered in the window choice, an

additional term should be incorporated into E(Σ,u∗).

III. DISCRETISATION AND OPTIMISATION

A number of carefully chosen approximations and relax-

ations were applied to make the optimisation problem (13)

tractable.

A. Discretisation

The functions u and Σ are discretised component-wise on

a regular grid XV with spacing aV at coordinates xi ∈ XV.

Furthermore, we define ui := u(xi) and Σi := Σ(xi). Using

finite elements with piecewise linear basis functions ϕi(x), we

approximate the functions as

u(x) ≈
∑

xi∈XV

ϕi(x)ui and Σ(x) ≈
∑

xi∈XV

ϕi(x)Σi .

Note that it is possible to extend the method to arbitrary grids,

e.g. irregular ones that adapt to the seeding density, as it is

used in [26]. The integrals in C and E are also discretised

using the introduced finite elements:

C(u,Σ)≈
∑

xi∈XV

∫

Ω

ϕi(x) dxC(ui,Σi, xi)

E(Σ,u)≈
∑

xi∈XV

∫

Ω

ϕi(x) dxE(Σi,u, xi)

Note that Ai :=
∫

Ω
ϕi(x) dx evaluates to a2V almost every-

where. The nested integrals in C(u,Σ, x) and Ehomog(Σ,u, x)
are discretised accordingly.

For windows of reasonable size the function w(x,Σ) incor-

porated in both terms weights only few terms with consider-

able impact. In order to reduce computational effort, we limit

evaluation to a bounding box which contains all y ∈ Ω, such

that w(y − x,Σ) ≤ 10−3.

The image data g1, g2 is given on a regular grid with a

spacing typically smaller than aV. They are transferred into a

cubic spline representation with all values outside the image

domain defined to be zero. Using an efficient implementation

based on [27], it is possible to evaluate the function value gi,
its gradient ∇gi and second derivatives H gi.

B. Optimisation

1) Barrier Function: The constraints Σ ∈ S are incorpo-

rated into the energy function using logarithmic barriers,

BS(Σ) := −µ (log det(Σ− λmin) + log det(λmaxI − Σ)) .

The penalty weight is µ := 10−2 throughout the work. Then

we minimise ES(Σ,u, x) := E(Σ,u, x) + BS(Σ) instead

of (9), which is – up to the symmetry of Σ – an unconstrained

problem.

2) Single Scale Optimisation: A major simplification of

the problem is to replace both minimality objectives by the

stationary conditions

∇ui
C(u,Σ)= 0 ∀xi ∈ XV (14a)

and ∇Σi
E(Σ,u)= 0 ∀xi ∈ XV . (14b)

A Newton step with respect to all displacement and window

shape variables is employed to find a set of Σ ∈ S and u ∈ U



BECKER et al.: VARIATIONAL ADAPTIVE CORRELATION METHOD FOR FLOW ESTIMATION 5

that satisfy these conditions. It is extended by a line search

method to avoid local maxima and saddle points.

Note, that although each equality constraint in (14a)-(14b)

is a nonlinear and non-convex function in both u and Σ, they

strongly simplify to

∇ui
C(u,Σ)= ∇ui

AiC(ui,Σi, xi)= 0 ∀xi ∈ XV

and ∇Σi
E(Σ,u)= ∇Σi

AiE(Σi,u, xi) = 0 ∀xi ∈ XV .

Thus, the displacements can be updated independently of each

other which is a consequence of the fact that we did not

add a spatial regularisation term on u. In the same way, the

refinement of the window shape parameters is independent in

the coordinates. The optimisation loop can be summarised as:

procedure SINGLESCALESOLUTION(u(1),Σ(1))

k ← 1
repeat

for all xi ∈ XV do

u
(k+1)
i ←VARIABLEUPDATE(C(u,Σ),ui, (u

(k),Σ(k)))

Σ
(k+1)
i ←VARIABLEUPDATE(E(Σ,u),Σi, (Σ

(k),u(k)))
end for

k ← k + 1
until stopping criterion fulfilled

return (Σ(k),u(k))
end procedure

An upper bound on the change of the variables is used as

stopping criterion. The function VARIABLEUPDATE improves

the solution x0 with respect to f by updating a subset of

variables y.

procedure VARIABLEUPDATE(f ,y,x0)

g ← ∇yf(x0), H ← Hy f(x0) ⊲ gradient, Hessian

∆y ← −(H + λI)−1g ⊲ Newton step direction w.r.t. y
α← αmax, xα ← x0

while α ≥ αmin do ⊲ line search

xα|y ← x0|y + α∆y ⊲ update only variables y
if f(xα) < f(x0) then

return xα ⊲ update successful

end if

α← βα
end while

return x0 ⊲ update failed

end procedure

The parameters were chosen conservatively: αmin = 10−9,

αmax = 1− 10−3, β = 10−1 and λ = 100.

3) Multiscale Optimisation: As indicated by Fig. 4, the

problem has many local minima which we intend to cir-

cumnavigate by wrapping a multiscale framework around the

optimisation loop. To this end, we represent the problem at the

original as well as a couple of coarser resolutions. The grid

spacings (data and variable) enlarge by factor s > 1 when

descending one level. E.g. for a 5-level dyadic pyramid, we

have s = 2 and we denote the resolution scales – from finest

to coarsest – as {1, 2, 4, 8, 16}.
The multiscale framework first recursively transfers image

and initial variable values from the finest to the coarsest level.

Then at each resolution the estimated solution of the next

coarser level act as initialisation for the variable refinement

in SINGLESCALESOLUTION.

Displacement variables are re-sampled to finer or coarser

grids using cubic spline interpolation. A small binomial low-

pass filter is used to avoid aliasing while down-sampling.

The multiscale image representation is created with the same

technique. The re-sampling process of the window shape

parameter is slightly more complex, as the constraint Σ ∈ S
has to be conserved. However, simple component-wise bi-

linear interpolation guarantees that the re-sampled value lies in

the convex hull of the interpolated values, and thus in S. The

same argument holds for applying low-pass filters as long as

their coefficients add up to one, such as it is the case for the

employed binomial filters before down-sampling. Given the

image data and (a possibly zero) initial solution, the overall

optimisation can be summarised as:

procedure MULTISCALESOLUTION(g
[1]
1 ,g

[1]
2 ,u[1],Σ[1])

for l = 2, 3, . . . , lmax do ⊲ fine to coarse

create g
[l]
i by downsampling g

[l−1]
i , for i ∈ {1, 2}

create u
[l] and Σ

[l] by down-sampling u
[l−1] and Σ

[l−1]

end for

for l = lmax, lmax − 1, . . . , 2 do ⊲ coarse to fine

(u[l],Σ[l])← SINGLESCALESOLUTION(u[l],Σ[l])
create u

[l−1] and Σ
[l−1] by up-sampling u

[l] and Σ
[l]

end for

(u[1],Σ[1])← SINGLESCALESOLUTION(u[1],Σ[1])
return (u[1],Σ[1])

end procedure

Further details on the implementation can be found in [23].

IV. EXPERIMENTS

In our experiments we investigated the basic properties of

the window adaptation (Sect. IV-A, IV-B), and evaluated the

joint approach with synthetic benchmark data (Sect. IV-C) as

well as real-world data (Sect. IV-D).

The proposed methods was implemented mostly in MAT-

LAB. Geometric properties of a window Σ, such as radius, re-

fer to the level contour {x ∈ R
2|w(x,Σ) = exp(−1)}, which

is also used for visualisation. No additional displacement filters

(e.g. vector median) were applied.

A. Window Adaptation Strategies

The following experiments were designed to estimate the

potential of the proposed error model to improve the accuracy

of the variational correlation method. As we want to concen-

trate on the suitability of error model function and not on errors

caused by the continuous optimisation process, we simplify the

method as follows: in order to avoid sub-optimal local minima,

the optimisation of the correlation is initialised by the ground

truth displacement. For the same reason, we do not adapt the

window continuously but evaluate the deviation from ground

truth for 975 window shapes using (8) with varying radius r,

orientation α and anisotropy a,

S:=















Σ(r, a, α)

∣

∣

∣

∣

∣

∣

∣

∣

r ∈
{

2
i

2

∣

∣

∣
i ∈ {−4,−3, . . . , 10}

}

,

a ∈
{

1− 2
i

4

∣

∣

∣
i ∈ {0, 1, . . . , 8}

}

,

α ∈
{

i
8π
∣

∣i ∈ {0, 1, . . . , 7}
}















.
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(a) vertical displacement component (b) detail
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(c) profile of the vertical displacement component

Fig. 6. Synthetic vector field, PIV-Challenge 2005, Case A4: (a) vertical
displacement component (-3 px (black) to +3 px (white) upwards), a detailed
view of the highlighted region is given in (b); (c) plot of the vertical
component of the displacements common for both data sets, Sinusoids I and
Sinusoids II. The vector field has a zero horizontal component, while the
vertical component is piecewise described by sine functions with decreasing
wavelength (400 to 20 px) and varying amplitude (around 2 px). While the
first data set contains no image distortions, 3% pixel noise and 20% unpaired
particles were added to the second one.

The correlation method was applied to 160 locations X ⊂ Ω
in two synthetic data sets with motion gradients of varying

degree. Both have a common motion pattern, which is illus-

trated in Fig. 6, but differ in the amount of image distortions.

The deviation of the estimated displacement from ground truth

at position x ∈ X using the (fixed) window shape Σ ∈ S
is then measured by their Euclidean distance and is denoted

by ε(x,Σ).
We considered our adaptation approach as one of three

strategies (indexed by i ∈ {1, 2, 3}) which choose the window

shape Σi(x) from the set S for a position x. Their perfor-

mance is compared on the basis of the mean error µi :=
1

|X|

∑

x∈X ε(x,Σi(x)). The three strategies are in detail:

Strategy 1 (Oracle): This hypothetical strategy “magically”

knows the values ε(x,Σ) a priori and can always choose the

optimal window:

Σ1(x) := argmin
Σ∈S

ε(x,Σ)

Thus, the mean error of this strategy, denoted as µ∗
1, provides

a lower bound for all strategies under this conditions.

Strategy 2 (Error Model): The second strategy represents

the proposed window adaptation method. For each position,

the window shape is chosen such that it is optimal with respect

to the defined error model function:

Σ2(x) := argmin
Σ∈S

E(Σ,u, x)

This optimisation problem is solved by enumerating all el-

ements of S. Furthermore, the ground truth vector field is

used for u to exclude influences caused by inaccuracies in the

displacement estimation. The mean error is denoted as µ2(σ)
and depends on the choice of σ, while the parameter eoutside
was set to zero.

Strategy 3 (Fixed Radius): A naive strategy is to choose

the window radius r a priori and uniformly for all position.

Σ3(x) := Σ(r, 0, 0)

The associated quality measurement is denoted by µ3(r).
For the latter two strategies we also define σ∗ and r∗

which minimise the corresponding mean errors and define

these values as µ∗
2 := µ2(σ

∗) and µ∗
3 := µ3(r

∗), respectively.

Figure 7 visualises and lists the results. For both data

sets, error rate improves by approximately 50% compared to

the fixed-radius strategy if window adaptation based on the

proposed error model is used. Furthermore, the mean error µ
is less sensible to the choice of the parameter σ than to the

window radius r.

B. Synthetic Vector Fields

For arbitrary vector fields, the optimal window shape with

respect to the proposed error model can form complex struc-

tures. To demonstrate the behaviour of the window adaptation

methods, we investigate a couple of simple synthetic vector

fields. Only windows were updated, while displacements were

kept fixed after initialisation. If not mentioned otherwise, in

all experiments the initial window radius was 5, the upper

radius limit was rmax = 6 pixels ( px), and no lower limit was

imposed. Furthermore we chose σ = 1 and eoutside = 0.

Figure 8 illustrates the adapted windows in the presence

of an affine flow, i.e. when u(x) can be written as an affine

function in x. If there are no further influences (such as the

boundary terms in (b)), the resulting shapes only depend on

the Jacobian of u, more precisely on its outer product.

In transition zones, e.g. where flows of different direc-

tion meet, fixed windows are disadvantageous, because they

smooth over high velocity gradients and thus wipe out details.

Thus, we investigate this situation in four simplified scenarios.

It becomes clear, that the window adaptation is invariant

against a constant offset (Fig. 9a vs. 9b) and rotation (Fig. 9a

vs. 9c) of the vector field, but only depends on the orientation

of the gradient. The sinusoid-shaped vector field in Fig. 9c is

motivated by the data set introduced in Fig. 6.

Finally, we investigate scenarios with sharp motion bound-

aries where it is of great importance for the measurement

accuracy that the window adaptation process respects the flow

discontinuities. The experiments in Fig. 10 combine round

and square shaped boundaries with constant and affine vector

fields. In any case, the adapted window shapes respect the

boundaries well.

C. Synthetic PIV Benchmark Data Set

The data set shown in Fig. 6 and already investigated in

Sect. IV-A was created for the PIV Challenge 2005 and used

to evaluate the spatial resolution of 19 PIV algorithms.

First experiments showed that it is essential to have a

good initialisation for the proposed adaptive approach. To this
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(c) Sinusoid II: fixed radius

10
−1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

error model parameter σ

m
ea

n 
er

ro
r 

µ

 

 

error model: µ
2
(σ)

oracle: µ∗
1

fixed radius: µ∗
3

(d) Sinusoid II: error model

Fig. 7. Comparison of window selection strategies: mean error of the fixed radius (dotted line), oracle (dashed line) and the error model based strategy (solid
line). (a) Results for Sinusoids I, comparing the fixed radius µ3(r) strategy for varying radii to the best values of the alternative strategies. (b) Same as (a),
but for the error model strategy and varying parameter σ. Best results are µ∗

1
= 0.00627, µ∗

2
= 0.0421 (for σ∗ = 10) and µ∗

3
= 0.0796 (r∗ = 2). (c)-(d):

Same as (a)-(b), but for the data set Sinusoids II, with µ∗

1
= 0.0255, µ∗

2
= 0.109 (σ∗ = 107/4), µ∗

3
= 0.206 (r∗ = 25/2).

(a) constant vector field (b) constant vector field, adaptation to
image boundaries

(c) affine vector field with isotropic
gradient

(d) affine vector field with anisotropic
gradient

Fig. 8. Synthetic displacement fields (arrows) and some of the adapted windows (ellipses). Constant vector fields: (a) The window radii would approach
infinity due to the lack of a gradient, but is limited by the constraint r ≤ 6. (b) The windows are additionally constrained to adapt to the boundaries of
the image domain by setting eoutside = 10. Affine vector fields: (c) Rotational field with isotropic gradients leads to round windows. (d) Vector field with
anisotropic gradients leads to ellipse-shaped windows.

end we first estimated a rough displacement field using fixed

windows and then process the data with window adaptation.

For the case Sinusoids I the initial vector field was calcu-

lated with 5 multiscale levels, using a scaling factor of
√
2 and

round windows with radius 6. The adaptive approach used only

3 multiscale levels. We set σ = eoutside = 20, and constrained

the windows radii to the range 2 to 40 px.

The results in Fig. 6 demonstrate that fixed windows can

recover the overall structure but smooth over small details.

In view of the following processing step, we favour a rough

reconstruction over a more detailed but definitely noisy one

which can be achieved using smaller windows. With the

window adaptation enabled, even the structures at the smallest

scale can be reconstructed well up to few outliers, as win-

dows align perpendicular to the velocity gradients and along

regions of homogeneous motion. Additional disturbances can
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(a) displacement gradient perpendicu-
lar to the flow

(b) same as (a) with a constant flow
superimposed

(c) displacement gradient along the
flow

(d) sinusoid

Fig. 9. Synthetic displacement fields (arrows) and some of the adapted windows (ellipses). Constant vector fields (upper and lower region) enclose a
transition zone (middle). Affine transition zone: Identical window shapes for different vector fields: (a) displacement gradients perpendicular to the flow,
(b) superimposed by a constant field, and (c) gradients parallel to flow. Sinusoid: (d) Transition zone is sinus-shaped ([0, π]). The adaptation scheme aligns
the windows perpendicular to the displacement gradient and reduces the size along the transition direction to avoid smoothing out the boundary.

(a) constant vector fields, square
boundaries

(b) constant vector fields, round
boundaries

(c) affine vector fields, square bound-
aries

(d) affine vector fields, round bound-
aries

Fig. 10. Synthetic displacement fields and some of the adapted windows (ellipses), with sharp discontinuities between the inner and outer motion regions.
Constant flows: Constant flow (red) interrupted by a zero flow (blue) with (a) square and (b) round inner region. Rotational (affine) flows: Two contrarily
rotating (affine) flows with (a) square and (b) round inner region. The adaptation scheme reduces the window sizes near the region boundaries to avoid
smoothing over motion discontinuities.

be observed near the upper and lower image boundaries, where

windows are extremely compressed.

Additive image noise and unpaired particles in combination

with the small structures renders the data set Sinusoids II

a challenge for any motion measurement algorithm. Again

we estimated a coarse description using fixed windows (ra-

dius 8 px). Initialised by this result, we run the adaptive

approach with the same parameters as for the previous data

set, but doubled σ and did not use multiscale calculation.

Figure 12 visualises the resulting displacements and adapted

windows. Just as for Sinusoids I, the fixed-window approach

can only capture the rough motion structures, but the following

adaptive approach complements the details even for the small-

est wavelength. However, more outliers than for Sinusoids I

can be observed, where also the adapted windows deviate from

their expected vertical alignment.

Finally, we compare our results for Sinusoids II to 19 ap-

proaches for flow measurement, which were described and

benchmarked in [28]. For this purpose we evaluated our

method with the same criterion, which is defined as follows:

for each sinusoid wavelength λ, we gained a motion pro-

file uλ(x) by averaging the displacements along the vertical

axis. Stripes of 10 px at the upper and lower boundary were

excluded before. Then using the ground truth profile u∗
λ, the

amplitude ratio was calculated as

A(λ) :=

∫ +λ/4

−λ/4
uλ(x) dx

∫ +λ/4

−λ/4
u∗
λ(x) dx

.

The characteristic curve was accurately included into a

copy of the comparison plots of the evaluation paper and is

presented in Fig. 13. Especially at the lowest wavelength, cor-

responding to the smallest structures in the data, our adaptive

approach outperforms most of the competing implementations.

D. Real Turbulent Experimental Data

Finally, we apply the proposed approach to real PIV data,

provided by Johan Carlier in [29] and available at [30]. The

experiment describes the turbulent flow behind a cylinder. We

chose the image pair number 600 of the data set, recorded

with a time difference of 200µs. Each has a resolution of

1280 px×1024 px and dynamics of 12 bit. In Fig. 2a a detailed

view of the image data attests the low image quality. An

overview over the flow is presented in Fig. 14. As in the
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Fig. 11. Synthetic vector field, PIV-Challenge 2005, Case A4, Sinusoids I

(no image distortions), full and detailed view of the estimated vertical
displacement component (colour map identical to Fig. 6): Row 1: Variational
correlation with fixed windows (r = 6) can only resolve the general structures
but smoothes over details. Row 2: Using the previous result as initialisation,
joint correlation and window adaptation (σ = 20) can significantly improve
the accuracy even for the smallest structures. Row 3: statistics (along the
complete vertical axis, but 10 px excluded at the upper and lower boundary) of
the results in row 2: mean displacement (thick line), range of ± one standard
deviation (shaded gray) and ground truth (thin line, cf. Fig. 6c). Row 4: The
adapted windows align perpendicular to the velocity gradient.

previous experiments, we calculated a coarse vector field using

fixed windows (r = 30) on the scales {1, 2, 4, 8, 16, 32},
see Fig. 15a. Initialised by this result, the adaptive approach

delivers a more detailed estimation (Fig. 15b). The windows

were constrained to r ∈ [3, 50], and σ was chosen as 100.

Only the finest scale was used.

Lacking ground truth data, we employ a vector field cal-

culated by the Lavision (http://www.lavision.de/en/) company

using their PIV-software Davis as reference (Fig. 15c). Our ap-

proach smoothes the displacements in regions of homogeneous

motion, while the reference solution exhibits some noise. In

turbulent regions, however, the windows are adapted such that

gradients in the vector field are prevailed.

In order to separate effects of the window adaptation from

the influence of initialisation, we rerun the adaptive method

with the same parameter but initialised with the reference

solution. The result in Fig. 15d shows the same properties

as discussed for the one in Fig. 15b. Furthermore, the coarse
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Fig. 12. Synthetic vector field, PIV-Challenge 2005, Case A4, Sinusoids II

(with additive image noise and unpaired particles), full and detailed view
of the estimated vertical displacement component (colour map identical to
Fig. 6): Row 1: The high amount of image noise necessitates large windows
(r = 8) for the approach based on fixed windows. Thus, details are smoothed
out, but the general structures can be resolved. Row 2: Using the previous
result as initialisation, joint correlation and window adaptation (σ = 40) can
significantly improve the accuracy even for the smallest structures, however
interrupted by local outliers. Row 3: statistics (along the complete vertical
axis, but 10 px excluded at the upper and lower boundary) of the results in
row 2: mean displacement (thick line), range of ± one standard deviation
(shaded gray) and ground truth (thin line, cf. Fig. 6c), Row 4: The windows
align perpendicular to the gradient with exception of the vicinity of outliers.

structure is almost identical in all three solutions, which

suggests their correctness, and shows the robustness of our

approach with respect to local optima.

Finally, Fig. 14 marks the location of three regions for

which we give detailed views of the vector field together

with some of the adapted windows. Figure 3 demonstrates

how windows sizes reduce in vicinity of a vortex compared

to a homogeneous region. The ability to continuously control

the window orientation is beneficial, for example around the

vortex in Fig. 16a. As already demonstrated in Fig. 9, the

windows do not necessarily align with the direction of the

flow, but with its gradient as in Fig. 16b.

V. CONCLUSION

An adaptive approach to measure motion in PIV image

data was presented. It is based on the correlation similarity

measure, which has proven to be robust also for noisy data.
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our approach

 

 

our approach

Fig. 13. Synthetic vector field, PIV-Challenge 2005, Case A4, region Sinusoids II: Part 1 and 2 of the comparison of the amplitude response depending
on the structure wavelength λ. We included the measurement of our experiments into the plot hard-copied from [28, Fig. 21a] (we redraw the numbers
of the horizontal axis for better readability) where 19 flow measurement implementations were compared. Most approaches use cross-correlation while the
methods labelled by CLIPS-8 and CEMAGREF-16 are based on optical flow. ESI and ∗-PTV are particle tracking velocimetry methods. For a description of
the competing approaches we refer to [28]. Our approach outperforms most of the other implementations, especially the accuracy for very small structures
was improved by using adaptive windows.

Fig. 14. Real 2D PIV experiment: Overview over the fluid flow, determined
by our adaptive correlation method. A mean vector field of about 12 px to the
right was subtracted everywhere. The rectangles mark the location of detailed
views in – from left to right – Fig. 3, 16a and 16b.

In contrast to classical methods which use a discrete search to

find the optimal displacement, we formulate it as a variational

problem and use continuous optimisation methods. Further-

more, we employ Gaussian-shaped weighting functions whose

shape can be continuously controlled and propose a sound

adaptation criterion which is based on an error model. Both

the displacement measurement and the window adaptation are

formulated as two interdependent optimisation problems.

In our experiments we demonstrated the ability of the error

model to improve the measurement accuracy and demon-

strated the basic behaviour of the adaptation method. We

applied our approach to a synthetic PIV benchmark data

set and outperformed most of 19 implementations of motion

estimators. Finally we showed, that our approach is capable

of handling noisy image data from a real experiment. The

window adaptation improves the reconstructed vector field in

both homogeneous and turbulent regions.

Further work includes to improve the error model function,

e.g. to incorporate spatial varying influences (seeding density,

image noise level) and further expert knowledge. Regular-

isation terms could be added to the motion estimation to

incorporate prior knowledge, e.g. non-compressibility, on the

observed physical process.

APPENDIX

DERIVATION OF THE NOISE TERM

The term Enoise(Σ) in (9) describes the impact of image

sensor noise and unpaired particles on the accuracy. For

this purpose we assume that the measurement in x is a

least-squared solution û of independent measurements u(y),
weighted with the same window function as the one used dur-

ing correlation. For simplicity, and without loss of generality,

we assume that the estimation is centred in x = 0. Further-

more, here we assume an unbounded variable domain Ω = R
2.

û :=arg min
u∈R2

∫

R2

w(y,Σ)‖u− u(y)‖22 dy

=

∫

R2 w(y,Σ)u(y) dy
∫

R2 w(y,Σ) dy
=

∫

R2

G(Σ, y)u(y) dy (15)

The noise term should only describe the influence of dis-

turbances in the image data, but not the error caused by

inhomogeneous motion. Thus, we assume each measurement

to be distributed around the true displacement u∗, but disturbed

by additive Gaussian noise, i.e. u(y) ∼ N
(

u∗, σ2

|A|I
)

. The

constant σ is the relative expected error with respect to the

size of the domain A on which a single estimation is based

on. Then we define the noise term to be the expected square

deviation of (15) from the true solution:

Enoise(Σ):= E
{

‖û− u∗‖22
}

(16)

It is possible to derive a closed form expression for this term.

To this end we represent the integral in (15) over an infinite
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(a) correlation only

(b) with window adaptation, initialised by (a)

(c) reference solution

(d) with window adaptation, initialised by (c)

Fig. 15. Real 2D PIV experiment, Left: horizontal component of the mea-
sured displacements (scale: 8 px (black) to 16 px (white) to the right), Right:

vertical component (-4 px (black) to +4 px (white) upwards): (a) Our approach
with fixed windows requires a large support (r = 30) to cope with the low
image quality and thus smoothes out fine structures. (b) Combined correlation
and window adaptation (σ = 100), initialised by (a). In comparison to (c)

the solution obtained by a commercial correlation software (Lavision Davis),
our approach preserves details in turbulent regions (middle) and at the same
time reduces small disturbances in homogeneous regions (upper and lower
boundary) by adapting windows accordingly. (d) Initialising our approach
with (c) (and using the same parameters as in (b)) shows the robustness with
respect to local minima.

domain as a Riemann integral,

û = lim
|A|→∞

lim
n→∞

ûn ,

which is the limit of the Riemann sums ûn. For simplicity,

we assume a square A which is decomposed into Nn := n2

regions of equal size |Ani| = |A|/Nn. Sample coordinates are

chosen as yni ∈ Ani. Then we can define

ûn :=

Nn
∑

i=1

|Ani|G(Σ, yni)u(yni) =

Nn
∑

i=1

wniu(yni)

with wni := |Ani|G(Σ, yni). In this formulation, the esti-

mated displacement ûn is a linear combination of normally

distributed variables and thus is normally distributed as well,

i.e. ûn ∼ N (µn, sn) with:

µn :=E{ûn} =
Nn
∑

i=1

wniu
∗ = u∗

Nn
∑

i=1

|Ani|G(Σ, yni)

sn :=E
{

(ûn − µn)(ûn − µn)
⊤
}

=

Nn
∑

i=1

w2
ni

σ2

|Ani|
I

=σ2I ·
Nn
∑

i=1

G(Σ, yni)
2 |Ani|

Using G(Σ, x)
2
= (2π

√

det(2Σ))−1G
(

1
2Σ, x

)

(see, e.g., [31,

eq. (348)]) we obtain

sn =
σ2

4π
√
detΣ

I

(

Nn
∑

i=1

G

(

1

2
Σ, yni

)

|Ani|
)

.

We assume that for large n the distribution of ûn describes

the distribution û ∼ N
(

µ̂, Σ̂
)

well. Passing the limit, we get

the expected result for the mean,

µ̂ := lim
|A|→∞

lim
n→∞

µn = u∗ lim
|A|→∞

∫

A

G(Σ, y) dy = u∗ ,

and – more importantly – the variance

Σ̂ := lim
|A|→∞

lim
n→∞

sn =
σ2

4π
√
detΣ

I lim
|A|→∞

∫

A

G

(

1

2
Σ, y

)

dy

=
σ2

4π
√
detΣ

I .

Then the definition (16) simplifies to (using [31, eq. (357)])

Enoise(Σ)= E
{

‖û− u∗‖22
}

= tr Σ̂ =
σ2

2π
√
detΣ

.

The noise level σ is the only parameter for this term.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support provided by

the European Commission (Fluid project, FP6-513663) and the

German Research Foundation (DFG grant SCHN 457/11-1).

REFERENCES

[1] M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry.
Berlin: Springer, 2001.

[2] R. Adrian and J. Westerweel, Particle Image Velocimetry, ser. Cambridge
Aerospace Series. Cambridge University Press, 2010.

[3] R. J. Adrian, “Twenty years of particle image velocimetry,” Exp Fluids,
vol. 39, pp. 159–169, 2005.

[4] B. Horn and B. Schunck, “Determining Optical Flow,” Artif Intell,
vol. 17, pp. 185–203, 1981.

[5] P. Ruhnau, T. Kohlberger, H. Nobach, and C. Schnörr, “Variational
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