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Abstract: Recently, the reformulation of the complementarity problem as a nonlinear
least squares problem was proposed by the authors, along with a corresponding nons-
mooth Levenberg-Marquardt- or Gauss-Newton-type method. This method has some
nice global and local convergence properties and turned out to be extremely robust
when applied to several difficult test problems. However, it requires the exact solution
of a linear least squares problem at each iteration and may therefore not be applicable
to large-scale problems. Hence we suggest an inexact version of this method which
allows inexact solutions of the linear least squares subproblems by using an appropri-
ate iterative method. We show that the convergence properties of the exact method
also hold for this inexact version, and we discuss several practical aspects related to
a suitable implementation of this inexact method. Numerical results are presented for
a number of large-scale problems taken from the MPCLIB collection or arising from
finite difference discretizations of optimal control and obstacle problems.

Keywords: Complementarity problems; Nonlinear least squares reformulation; Semis-
mooth functions; Levenberg-Marquardt method; LSQR method; Global convergence;
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1 Introduction

The complementarity problem is to find a solution x∗ ∈ R
n of the following system of

equations and inequalities:

xi ≥ 0, Fi(x) ≥ 0, xiFi(x) = 0 ∀i = 1, . . . , n, (1)

where F : R
n → R

n denotes a given continuously differentiable mapping. This problem
has a number of important applications, and the interested reader is referred to the
survey paper [13] to get a first impression.

Most algorithms for the solution of the complementarity problem (1) were proposed
during the last 15 years and are based on a suitable reformulation of this problem, either
as a nonlinear system of equations or as a constrained or unconstrained optimization
problem. Many of these methods are described in the excellent book [9, 10] by Facchinei
and Pang.

One of the most prominent and efficient methods for solving the complementarity
problem is the class of semismooth Newton methods, see the references [2, 5, 11, 12,
20, 30] for some examples. These methods can easily be extended to the slightly more
general mixed complementarity problem, however, in order to keep our notation as
simple as possible, we prefer to deal with the structurally simpler complementarity
problem (1). We stress, however, that all results presented in this paper can be extended
to mixed complementarity problems.

The reformulation of the complementarity problem used in this paper is based on
the recent article [19]. The method described in [19] is a semismooth least squares
Levenberg-Marquardt-type method and seems to be numerically much more stable than
any other semismooth method proposed earlier. However, it solves at each iteration a
linear least squares subproblem, and this can be done efficiently only if the dimension
of the underlying complementarity problem is not too large. In particular, we have
to expect storage problems when solving the linear least squares problems by any of
the standard orthogonalization methods since these methods usually produce dense
matrices.

The main motivation for this paper is therefore to modify the method from [19] in
such a way that it can be applied to large-scale problems. This can be done by allowing
inexact solutions of the linear least squares subproblem using an iterative solver that
preserves the sparsity structure of the complementarity problem.

We describe this algorithm and the details of the reformulation of (1) as an overde-
termined least squares problem in Section 2. The convergence of this method is analyzed
in Section 3. Some details of the implementation including a discussion of suitable pre-
conditioners are presented in Section 4. This section also contains numerical results for
a number of different large-scale problems either taken from the MCPLIB library or
obtained by discretization of optimal control and obstacle problems. We then conclude
with some final remarks in Section 5.

Our notation is standard: R
n denotes the n-dimensional real vector space. The

Euclidean vector norm or its associated matrix norm are denoted by ‖ · ‖, while ‖ · ‖∞
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is used for the maximum norm in R
n. For a continuously differentiable function F :

R
n → R

m, we write F ′(x) for the Jacobian of F at a point x ∈ R
n, whereas ∇F (x)

denotes the transposed Jacobian. In particular, if m = 1, then ∇F (x) is the gradient
vector, which is considered to be a column vector. On the other hand, if F : R

n → R
m

is locally Lipschitz only, then ∂F (x) is the generalized Jacobian of F at x in the sense
of Clarke [3]. It is well-known that the inclusion

∂F (x)T ⊆ ∂F1(x)× . . .× ∂Fm(x) (2)

holds, where ∂Fi(x) is the generalized gradient of Fi at x (again viewed as column
vectors). The set on the right-hand side of (2) is sometimes called the C-subdifferential
of F at x and denoted by ∂CF (x), see, e.g., [27]. Finally, we make frequent use of the
Landau symbols O(·) and o(·) which are defined as follows: Given two sequences {αk}
and {βk} converging to zero, we write αk = O(βk) if lim supk→∞

αk/βk < ∞, whereas
αk = o(βk) means that limk→∞ αk/βk = 0.

2 Reformulation and Algorithm

The method to be considered in this paper is based on an approach from [19]. In this
section, we only review the basic definitions and properties of that approach and refer
the interested reader to [19] for a motivation.

The method from [19] exploits a reformulation of the complementarity problem (1)
as an overdetermined nonlinear system of equations

Φ(x) = 0 (3)

with Φ : R
n → R

2n being defined by

Φ(x) :=

















...
λφFB(xi, Fi(x)), i = 1, . . . , n

...
(1− λ)φ+(xi, Fi(x)), i = 1, . . . , n

...

















, (4)

where λ ∈ (0, 1) is a fixed but arbitrary parameter used as a weight between the first
term and the second one, φ+ : R

2 → R is the function

φ+(a, b) := a+b+ ,

where z+ := max{0, z} for z ∈ R, and φFB : R
2 → R denotes the Fischer-Burmeister

function (see [14])
φFB(a, b) :=

√
a2 + b2 − a− b,
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which belongs to the class of NCP-functions defined via the characterization

φ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0

of their zeros.
These properties guarantee that x∗ is a solution of the complementarity problem if

and only if it solves the nonlinear least squares problem

min Ψ(x) =
1

2
‖Φ(x)‖2 (5)

with zero residual, where Φ denotes the mapping from (4). Here, it is interesting
to note that (besides the nonsmoothness of Φ) the merit function Ψ is continuously
differentiable everywhere (see [19]). Taking these observations into account, we are
now able to state our inexact Levenberg-Marquardt-type method for the solution of the
complementarity problem (1) via the nonlinear least squares reformulation (5).

Algorithm 2.1 (Inexact Semismooth Levenberg-Marquardt Method)

(S.0) Let β ∈ (0, 1), σ ∈ (0, 1
2
), ρ > 0, p > 2 and ε ≥ 0. Choose any x0 ∈ R

n. Set
k := 0.

(S.1) If ‖∇Ψ(xk)‖ ≤ ε: STOP.

(S.2) Choose Hk ∈ ∂CΦ(xk), νk > 0 and find an approximate solution dk ∈ R
n of

(

HT
k Hk + νkI

)

d = −∇Ψ(xk), (6)

where νk is the Levenberg-Marquardt parameter. If the condition

∇Ψ(xk)Tdk ≤ −ρ‖dk‖p (7)

is not satisfied, set dk = −∇Ψ(xk).

(S.3) Compute tk = max{βℓ | ℓ = 0, 1, 2, . . .} such that

Ψ(xk + tkd
k) ≤ Ψ(xk) + σtk∇Ψ(xk)Tdk. (8)

(S.4) Set xk+1 = xk + tkd
k, k ← k + 1, and go to (S.1).

Algorithm 2.1 is very similar to the one presented in [8] (see also [17]) which, however, is
based on a different reformulation of the complementarity problem as a square system
of equations. Nevertheless, this observation will simplify the convergence analysis of
Algorithm 2.1 significantly, and we will come back to this point in the next section.

Before investigating the convergence properties of Algorithm 2.1, however, we need
to say what we mean by solving the subproblem (6) inexactly in Step (S.2). To specify
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this point, we will assume that the inexact solution dk of (6) satisfies a relation of the
form

(HT
k Hk + νkI)d

k = −∇Ψ(xk) + rk (9)

for some residual vector rk such that

‖rk‖ ≤ αk‖∇Ψ(xk)‖ (10)

for some a priori chosen number αk ≥ 0. Note that the choice αk = 0 corresponds to
an exact solution of the regularized linear least squares subproblem from (6).

3 Convergence Properties

In this section, we investigate the convergence properties of our algorithm. To this
end, we assume that the termination parameter ε is equal to zero and that Algorithm
2.1 generates an infinite sequence. We further assume throughout this section that the
subproblems (6) are solved inexactly in such a way that conditions (9) and (10) hold
for some sequence {αk}.

We first state a global convergence result for Algorithm 2.1. Its proof is essentially
the same as the one from [8, Theorem 12], and we therefore skip the details here.

Theorem 3.1 Assume that the sequence {νk} is bounded and that the sequence of resid-
ual vectors {rk} satisfies condition (10) for some sequence of positive numbers {αk} such
that αk ≤ ᾱ for some ᾱ ∈ [0, 1). Then every accumulation point of a sequence {xk}
generated by Algorithm 2.1 is a stationary point of Ψ.

Conditions for a stationary point of Ψ to be a solution of the complementarity problem
(1) are given in [19] and therefore not repeated here.

In order to show local fast convergence, we need a regularity assumption. To this
end, we define the index sets

α := {i | x∗i > 0, Fi(x
∗) = 0},

β := {i | x∗i = 0, Fi(x
∗) = 0},

γ := {i | x∗i = 0, Fi(x
∗) > 0},

and recall that a solution x∗ of the complementarity problem is said to be R-regular if
the submatrix F ′(x∗)αα is nonsingular and the Schur complement

F ′(x∗)ββ − F ′(x∗)βαF
′(x∗)−1

ααF
′(x∗)αβ

is a P -matrix (see [29, 4]). For our subsequent analysis, we note that the R-regularity
assumption implies that, if the sequence {xk} converges to an R-regular solution x∗,
then the matrices HT

k Hk are uniformly positive definite, i.e., there is a constant γ > 0
such that

‖Hkd
k‖2 = (dk)THT

k Hkd
k ≥ γ‖dk‖2 (11)
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for all k sufficiently large, see [19].
We are now in the position to state a local convergence result.

Theorem 3.2 Let {xk} be a sequence generated by Algorithm 2.1, let the sequence {νk}
be bounded and assume that {αk} → 0 with {αk} being the sequence from (10). Assume
that x∗ is an accumulation point of {xk} such that x∗ is an R-regular solution of the
complementarity problem (1). Then the following statements hold:

(a) The entire sequence {xk} converges to x∗.

(b) Eventually dk is always given by the inexact solution of system (6).

(c) The full stepsize tk = 1 is always accepted for k sufficiently large so that xk+1 =
xk + dk provided that νk → 0.

(d) The rate of convergence is Q-superlinear if νk → 0.

(e) The rate of convergence is Q-quadratic if νk = O(‖Φ(xk)‖), αk = O(‖Φ(xk)‖)
and, in addition, F ′ is locally Lipschitzian.

Proof. (a) Using the R-regularity assumption, we can argue exactly as in [19, Theorem
3.3 (a)] for proving that x∗ is an isolated accumulation point of the sequence {xk}.

Let {xk}K denote any subsequence converging to x∗, and note that x∗ is a stationary
point of Ψ by Theorem 3.1. For all k ∈ N such that dk is an inexact solution of (6), we
have

‖xk+1 − xk‖ = tk‖dk‖
≤ ‖dk‖
(9)

≤ ‖(HT
k Hk + νkI)

−1‖ ‖ − ∇Ψ(x) + rk‖
≤ ‖(HT

k Hk + νkI)
−1‖

(

‖∇Ψ(x)‖+ ‖rk‖
)

(10)

≤ (1 + αk)‖(HT
k Hk + νkI)

−1‖ ‖∇Ψ(x)‖.

On the other hand, for all k ∈ N with dk = −∇Ψ(xk), we have

‖xk+1 − xk‖ = tk‖dk‖ ≤ ‖dk‖ = ‖∇Ψ(xk)‖.

Together, it follows from {∇Ψ(xk)}K → 0, the assumed boundedness of {νk} and [19,
Lemma 2.5] that {‖xk+1 − xk‖}K → 0. Hence statement (a) follows from [23, Lemma
4.10].

(b) First we prove that there is a constant κ > 0 such that

∇Ψ(xk)Tdk ≤ −κ‖dk‖2 (12)
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for all k ∈ N sufficiently large, where dk denotes an inexact solution of (6) in the sense
that (9) and (10) are satisfied.

Since {νk} is bounded by assumption, xk → x∗ by (a) and the generalized Jacobian is
upper semicontinuous, the sequence {HT

k Hk +νkI} is bounded. Furthermore, it follows
from xk → x∗, the assumed R-regularity and [19, Lemma 2.5] that the corresponding
inverse matrices are also uniformly bounded. Hence there is a constant c > 0 such that

‖HT
k Hk + νkI‖ ≤ c and ‖(HT

k Hk + νkI)
−1‖ ≤ c ∀k ∈ N. (13)

Since
‖HT

k Hk + νkI‖ = λmax(H
T
k Hk + νkI) =: λkmax

and

‖(HT
k Hk + νkI)

−1‖ =
1

λmin(H
T
k Hk + νkI)

=:
1

λkmin

,

we obtain from (13)

1

c
‖dk‖2 ≤ λkmin‖dk‖2 ≤ (dk)T (HT

k Hk + νkI)d
k ≤ λkmax‖dk‖2 ≤ c‖dk‖2. (14)

Furthermore, we have

‖∇Ψ(xk)− rk‖ (9)
= ‖(HT

k Hk + νkI)d
k‖ ≤ ‖HT

k Hk + νkI‖ ‖dk‖

and therefore

‖dk‖ ≥ ‖∇Ψ(xk)− rk‖
‖HT

k Hk + νkI‖
(13)

≥ 1

c
‖∇Ψ(xk)− rk‖

≥ 1

c

(

‖∇Ψ(xk)‖ − ‖rk‖
)

(10)

≥ 1

c

(

‖∇Ψ(xk)‖ − αk‖∇Ψ(xk)‖
)

=
1

c
(1− αk)‖∇Ψ(xk)‖.

(15)

The Cauchy-Schwarz inequality therefore implies

∇Ψ(xk)Tdk
(9)
= −(dk)T (HT

k Hk + νkI)d
k + (rk)Tdk

≤ −(dk)T (HT
k Hk + νkI)d

k + ‖rk‖ ‖dk‖
(10)

≤ −(dk)T (HT
k Hk + νkI)d

k + αk‖∇Ψ(xk)‖‖dk‖
(14)

≤ −1

c
‖dk‖2 + αk‖∇Ψ(xk)‖‖dk‖

(15)

≤ −1

c
‖dk‖2 + c

αk
1− αk

‖dk‖2.
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Hence inequality (12) follows immediately from the fact that αk → 0.
Using (12), the Cauchy-Schwarz inequality implies

κ‖dk‖2 ≤ ‖∇Ψ(xk)‖ ‖dk‖

and therefore {‖dk‖} → 0. This together with p > 2 gives statement (b), i.e., the test
(7) is satisfied for all k sufficiently large.

(c), (d) We first show that

‖xk + dk − x∗‖ = o(‖xk − x∗‖) (16)

holds for all k ∈ N sufficiently large. To this end, we recall that, for any k ∈ N, the
matrix HT

k Hk + νkI is nonsingular with ‖(HT
k Hk + νkI)

−1‖ ≤ c by (13). Furthermore,
the sequence {Hk} is bounded (since {xk} is convergent) and we can assume without
loss of generality that we also have ‖HT

k ‖ ≤ c. Since ∇Ψ(xk) = HT
k Φ(xk) in view of

[19, Theorem 2.7], we obtain for all xk sufficiently close to x∗ that

‖xk + dk − x∗‖
(9)
= ‖xk + (HT

k Hk + νkI)
−1(−∇Ψ(xk) + rk)− x∗‖

≤ ‖(HT
k Hk + νkI)

−1‖ ‖∇Ψ(xk)− rk − (HT
k Hk + νkI)(x

k − x∗)‖
≤ c‖HT

k Φ(xk)−HT
k Hk(x

k − x∗)− νk(xk − x∗)− rk‖
≤ c

(

‖HT
k (Φ(xk)− Φ(x∗)−Hk(x

k − x∗))‖+ νk‖xk − x∗‖+ ‖rk‖
)

(10)

≤ c
(

‖HT
k ‖‖Φ(xk)− Φ(x∗)−Hk(x

k − x∗)‖+ νk‖xk − x∗‖+ αk‖HT
k Φ(xk)‖

)

≤ c
(

c‖Φ(xk)− Φ(x∗)−Hk(x
k − x∗)‖+ νk‖xk − x∗‖+ αkc‖Φ(xk)− Φ(x∗)‖

)

= o(‖xk − x∗‖) + o(‖xk − x∗‖) + o(‖xk − x∗‖)
= o(‖xk − x∗‖)

since νk → 0, αk → 0, and Φ is locally Lipschitz and semismooth (see [19, Theorem
2.1]). Hence (16) holds.

In order to verify statement (c), we have to show that the full step tk = 1 is
eventually accepted by the line search rule in Algorithm 2.1. This fact may be derived
from a general result in [7] using some additional properties of the merit function Ψ.
However, we prefer to give a direct proof here which does not exploit any further
properties of this merit function.

First note that (16) implies

‖xk − x∗‖ ≤ ‖xk + dk − x∗‖+ ‖dk‖ = o(‖xk − x∗‖) + ‖dk‖.

Hence we have
‖xk − x∗‖ = O(‖dk‖). (17)
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Together with (16), the local Lipschitz property of Φ and the fact that Φ(x∗) = 0, we
therefore obtain

Ψ(xk + dk) =
1

2
‖Φ(xk + dk)‖2

=
1

2
‖Φ(xk + dk)− Φ(x∗)‖2

= O(‖xk + dk − x∗‖2)
= o(‖xk − x∗‖2)
= o(‖dk‖2).

(18)

In a similar way, we also get from (10) and ∇Ψ(xk) = HT
k Φ(xk) that

‖rk‖ = o(‖∇Ψ(xk)‖) = o(‖Φ(xk)− Φ(x∗)‖) = o(‖xk − x∗‖) = o(‖dk‖). (19)

Exploiting the semismoothness of Φ once again, we have

∣

∣‖Φ(xk)−Φ(x∗)‖−‖Hk(x
k−x∗)‖

∣

∣ ≤ ‖Φ(xk)−Φ(x∗)−Hk(x
k−x∗)‖ = o(‖xk−x∗‖). (20)

This means that there is a positive sequence τk → 0 such that

∣

∣‖Φ(xk)− Φ(x∗)‖ − ‖Hk(x
k − x∗)‖

∣

∣ ≤ τk‖xk − x∗‖

for all k sufficiently large. Consequently, we have

τk‖xk − x∗‖+ ‖Hk(x
k − x∗)‖ − ‖Φ(xk)− Φ(x∗)‖ ≥ 0

and
τk‖xk − x∗‖ − ‖Hk(x

k − x∗)‖+ ‖Φ(xk)− Φ(x∗)‖ ≥ 0 (21)

for all k large enough. Multiplying the last two inequalities, we obtain

τ 2
k‖xk − x∗‖2−‖Hk(x

k − x∗)‖2 + 2‖Hk(x
k − x∗)‖ ‖Φ(xk)−Φ(x∗)‖ ≥ ‖Φ(xk)−Φ(x∗)‖2.

We therefore have

1

2
‖Φ(xk)−Φ(x∗)‖2 ≤ −1

2
‖Hk(x

k−x∗)‖2+‖Hk(x
k−x∗)‖ ‖Φ(xk)−Φ(x∗)‖+o(‖xk−x∗‖2).

On the other hand, multiplying (21) with ‖Φ(xk)− Φ(x∗)‖ and rearranging terms, we
get

−‖Φ(xk)− Φ(x∗)‖2

≤ τk‖xk − x∗‖ ‖Φ(xk)− Φ(x∗)‖ − ‖Hk(x
k − x∗)‖ ‖Φ(xk)− Φ(x∗)‖

≤ −‖Hk(x
k − x∗)‖ ‖Φ(xk)− Φ(x∗)‖+ o(‖xk − x∗‖2)
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since Φ is locally Lipschitz. Adding the last two inequalities and using (17) gives

−1

2
‖Φ(xk)− Φ(x∗)‖2 ≤ −1

2
‖Hk(x

k − x∗)‖2 + o(‖dk‖2). (22)

Since
∣

∣‖Hk(x
k + dk − x∗)‖ − ‖Hkd

k‖
∣

∣ ≤ ‖Hk(x
k + dk − x∗)−Hkd

k‖ = ‖Hk(x
k − x∗)‖

holds and the left-hand term is nonnegative, squaring both sides gives

‖Hk(x
k + dk − x∗)‖2 − 2‖Hk(x

k + dk − x∗)‖ ‖Hkd
k‖+ ‖Hkd

k‖2 ≤ ‖Hk(x
k − x∗)‖2.

Multiplying this inequality by −1
2

and using (16), (17) as well as the boundedness of
the sequence {Hk}, we obtain

−1

2
‖Hk(x

k − x∗)‖2

≤ −1

2
‖Hkd

k‖2 − 1

2
‖Hk(x

k + dk − x∗)‖2 + ‖Hk(x
k + dk − x∗)‖ ‖Hkd

k‖

≤ −1

2
‖Hkd

k‖2 − 1

2
‖Hk(x

k + dk − x∗)‖2 + o(‖dk‖2)

≤ −1

2
‖Hkd

k‖2 + o(‖dk‖2).

(23)

Summarizing our previous discussion, we now obtain for all xk sufficiently close to x∗

that

Ψ(xk + dk)−Ψ(xk)− σ∇Ψ(xk)Tdk

(9),(18)
= o(‖dk‖2)− 1

2
‖Φ(xk)‖2 + σ(dk)T (HT

k Hk + νkI)d
k − σ(rk)Tdk

≤ −1

2
‖Φ(xk)‖2 + σ(dk)T (HT

k Hk)d
k + σνk‖dk‖2 + o(‖dk‖2) + σ|(rk)Tdk|

νk→0

≤ −1

2
‖Φ(xk)− Φ(x∗)‖2 + σ(dk)T (HT

k Hk)d
k + o(‖dk‖2) + σ‖rk‖‖dk‖

(22),(19)

≤ −1

2
‖Hk(x

k − x∗)‖2 + σ(dk)T (HT
k Hk)d

k + o(‖dk‖2)
(23)

≤ −1

2
‖Hkd

k‖2 + σ‖Hkd
k‖2 + o(‖dk‖2)

= (σ − 1

2
)‖Hkd

k‖2 + o(‖dk‖2)
(11)

≤ (σ − 1

2
)γ‖dk‖2 + o(‖dk‖2)

< 0,

,

where the last two inequalities follow from the fact that σ ∈ (0, 1/2). This implies that
the full step is eventually accepted, i.e., we have xk+1 = xk + dk for all k sufficiently
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large. Consequently, (16) shows that {xk} converges Q-superlinearly to x∗.

(e) The proof is essentially the same as for the local superlinear convergence. To this
end, we only note that F ′ being locally Lipschitz implies that Φ is strongly semismooth
by [19, Theorem 2.1], and that the relation

‖Φ(xk)− Φ(x∗)−Hk(x
k − x∗)‖ = O(‖xk − x∗‖2).

holds for strongly semismooth functions, see [28, 26, 25, 10]. �

Note that statement (e) of Theorem 3.2 remains true if the two sequences {νk} and
{αk} satisfy νk = O(‖∇Ψ(xk)‖) and αk = O(‖∇Ψ(xk)‖).

4 Numerical Results

Since the previous sections showed that the good theoretical properties of the exact
semismooth Newton method from [19] also hold for the inexact version from Algorithm
2.1, we now look at the practical behaviour of the algorithm. Here we are mainly inter-
ested in large-scale problems where the exact method from [19] may not necessarily be
applied to because the solution of the linearized least squares problem at each iteration
is either too time-consuming or simply not possible due to storage problems.

We first give some general comments regarding the implementation of Algorithm 2.1
in Subsection 4.1. We then give some more details and present our numerical results in
Subsections 4.2 (for the large-scale problems from MCPLIB), 4.3 (for some problems
from optimal control), and 4.4 (for a discretized obstacle problem).

4.1 General Considerations

We first note that Algorithm 2.1 can be extended in a relatively simple way to the
more general class of mixed complementarity problems. Some details are given in [19].
Our implementation is therefore able to deal with mixed complementarity problems.
Note, however, that we still write Φ(x) = 0 for the corresponding reformulation as an
overdetermined nonlinear system of equations, and we still write Ψ(x) := 1

2
‖Φ(x)‖2 for

the associated merit function, i.e., we do not change our notation from the previous
sections although Φ and Ψ are defined in a slightly different way.

We implemented Algorithm 2.1 in MATLAB. The implementation corresponds
exactly to the statement of Algorithm 2.1 except that we use a nonmonotone line
search. To be more precise, we use the standard (monotone) Armijo rule during the
first five iterations and then switch to the nonmonotone line search where the maximum
of the function values Ψ(xk) is taken over the last ten iterations, see [15] for further
details.

Some preliminary numerical experiments indicated that small values of the Levenberg-
Marquardt parameter νk give much better results than larger ones so that we decided
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to take the limiting value νk = 0 for all k, i.e., the Levenberg-Marquard step from (6)
reduces to a Gauss-Newton step

min
d
‖Hkd+ Φ(xk)‖. (24)

The search direction dk is always given by the inexact solution of system (24).
We terminate the iteration in step (S.1) of Algorithm 2.1 if one of the following

conditions are satisfied:

Ψ(xk) ≤ 10−8 or ‖∇Ψ(xk)‖∞ ≤ 10−6 or k > 100.

The other parameters used in our implementation are λ = 0.9, β = 0.9 and σ = 10−4.
For the inexact solution of the linearized least squares subproblems, we use the

LSQR method from [24]. An implementation of LSQR is provided by MATLAB. LSQR
is an iterative method for the solution of linear least squares problems and does not
need any matrix factorizations. This allows us to apply LSQR to large-scale problems.
The forcing sequence {αk} from Algorithm 2.1, which determines the accuracy with
which we actually solve the subproblems, is defined as

αk = min
{ 10−2

k + 1
,Ψ(xk), ‖∇Ψ(xk)‖∞

}

.

LSQR employs several termination criteria (see [24]). The two main criteria used in
our implementation are

‖rkLS‖
‖Φ(xk)‖ ≤ αk (25)

and
‖HT

k r
k
LS‖ ≤ max

{

10−8,min
{

αk, θ‖HT
k Φ(xk)‖

}}

with θ = 0.01, (26)

where rkLS := Hkd + Φ(xk) denotes the residual vector of (24) (note that this vector is
different from the vector rk occuring in (9)). Basically, the first criterion (25) checks
whether the residuum is sufficiently small. In general, this condition will be satisfied
only if the linearized least squares problem has a zero or small residuum in the solution
dk, and this will usually happen only if we are getting close to a solution x∗ of our
mixed complementarity problem.

The other condition (26) is applicable in more general situations and checks whether
the error in the normal equation is small enough. Note that we use an absolute lower
bound of 10−8 so that we do not force this error to become too small. The other two
terms in (26) are easy to understand: We require the error in the normal equation to
be at least as small as αk, and, in addition, it has to satisfy the bound

‖HT
k r

k
LS‖ ≤ θ‖HT

k Φ(xk)‖

for some constant θ ∈ (0, 1). This latter condition is important because otherwise
it happens quite often that the zero vector (used as a starting point for the inner

13



LSQR iteration) is accepted by this criterion, meaning, however, that xk = xk+1 in the
corresponding outer iteration, and this useless situation has to be avoided.

We also note that estimates of the quantities ‖rkLS‖ and ‖HT
k r

k
LS‖ used within the

inner termination criterion can be obtained at minimal cost from the LSQR method
itself, see [24] for more details.

Finally, we turn to the question of a suitable preconditioner. Like all iterative
methods for the solution of linear systems of equations, the practical performance of
LSQR for the iterative solution of the linear least squares subproblem (24) may often
be accelerated by the choice of a suitable preconditioner. Note, however, that we only
have the possibility to choose a right preconditioner M since

min
d
‖Hd+ Φ(x)‖ = min

z
‖HM−1z + Φ(x)‖, where z = Md,

whereas a left preconditioner would change the subproblem. In order to find an appro-
priate preconditioner M , recall that any matrix H ∈ ∂CΦ(x) has the representation

H =

(

λH1

(1− λ)H2

)

, (27)

where
H1 ⊆ Da(x) +Db(x)F

′(x) and H2 ⊆ D̃a(x) + D̃b(x)F
′(x) (28)

with certain diagonal matrices Da(x), Db(x), D̃a(x), D̃b(x), see [19, Theorem 2.3] for
more details. Taking into account this structure, a natural choice for M seems to be
the first block matrix H1 provided this matrix is nonsingular and the size and structure
of H1 allows the solution of linear systems of equations with this matrix. Note also that
H1 is the leading block since λ = 0.9 in our implementation, i.e., we put much more
emphasis on this block than on the second part.

However, for some large-scale problems, it may not be possible to useH1 or a suitable
modification of this matrix as a preconditioner, and then we have to take a closer look
at the particular structure of this matrix in order to find a suitable preconditioner. We
will illustrate this point in more detail in some of the following subsections.

4.2 MCPLIB Test Problems

Our first test problems are the larger ones taken from the MCPLIB. Note that the test
problem library used here is an updated version of the MCPLIB originally introduced
in [6]. The starting point x0 is the standard one provided by the MCPLIB collection.

Since the examples from the MCPLIB are difficult, but still of reasonable size,
we basically take the suggestion from the previous subsection and use the slightly
regularized H1-block M := H1 + 10−4I as a preconditioner. We note, however, that
nonsingularity of this matrixM is not guaranteed, but the addition of the scaled identity
seems to be quite helpful in order to avoid singularity problems at the solution of some
test examples.
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Our numerical results are summarized in Table 1. In this table, the first column
gives the name of the problem; Dim is the number of the variables in the problem; o.it.
denotes the number of outer iterations; column avg.i.it. presents the average number of
inner LSQR iterations needed to solve the corresponding linear least squares problem
(24) inexactly; Ψ(x0) gives the value of the merit function at the starting point; and
Ψ(xf) and ‖∇Ψ(xf)‖∞ denote the values of Ψ(x) and ‖∇Ψ(x)‖∞ at the final iterate
x = xf .

Table 1: Numerical results for (large) MCPLIB test prob-
lems

Problem Dim o.it. avg.i.it. Ψ(x0) Ψ(xf) ‖∇Ψ(xf)‖∞
bert oc 5000 5 1.8 5.13e+01 2.99e-12 1.07e-06
bratu 5625 8 1.6 1.41e+01 4.22e-10 4.21e-05
bishop 1645 — — 1.00e+11 — —
lincont 419 34 45.2 7.11e+03 1.19e-11 7.37e-06
obstacle 2500 7 1.0 2.36e-02 6.79e-10 4.88e-05
opt cont 288 8 1.9 6.09e+01 5.86e-09 8.92e-05
opt cont31 1024 10 1.5 6.76e+01 7.57e-10 3.36e-05
opt cont127 4096 11 2.0 3.89e+01 1.12e-09 4.77e-05
opt cont255 8192 10 2.9 2.64e+01 4.78e-09 1.37e-05
opt cont511 16384 13 3.6 1.84e+01 2.54e-14 3.26e-07
trafelas 2904 39 4.2 5.28e+03 1.10e-11 3.86e-06

With the only exception of example bishop, we see from Table 1 that we can solve
all other test examples. These other examples include some problems like lincont or
trafelas which are usually regarded as being quite difficult. We also stress that the
average number of inner iterations is extremely small for all problems except lincont.
This indicates the effectiveness of our preconditioner.

4.3 Optimal Control Problems

In this section we look at the practical behaviour of the algorithm by considering a
variety of large-scale complementarity problems resulting from suitable discretizations
of optimal control problems. We consider both control problems with control con-
straints in Subsection 4.3.1 and control problems with control and state constraints in
Subsection 4.3.2.

4.3.1 Control Problems with Control Constraints

Let Ω ⊂ R
2 be a bounded domain with boundary Γ = ∂Ω, and let yd, ud, ψ ∈ L2(Ω)

be given functions such that yd represents a desired state, ud a desired control, and ψ
describes the upper bounds on the control variable. Furthermore, let α ≥ 0 denote a
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regularization parameter. Our aim is then to find a control u and a corresponding state
y minimizing the functional

J(y, u) =
1

2

∫

Ω

(

y(x)− yd(x)
)2
dx+

α

2

∫

Ω

(

u(x)− ud(x)
)2
dx,

subject to the elliptic state equation

−∆y(x) = u(x), for x ∈ Ω,

the Dirichlet boundary conditions

y(x) = 0, for x ∈ Γ,

and the control constraints

u(x) ≤ ψ(x) a.e. in Ω.

To be more specific, consider the two-dimensional case Ω = (0, 1) × (0, 1) ⊆ R
2, and

let A denote the standard five-point finite difference approximation to the negative
Laplacian with uniform stepsize h := 1/(N + 1) for some N ∈ N, so that we have
n := N2 interior nodes. Then the discretized optimal control problem becomes

min
u,y

1

2
‖y − yd‖22 +

α

2
‖u− ud‖22 s.t. Ay = u, ψ − u ≥ 0,

where, for simplicity of notation, the discretized functions u, y etc. are denoted by the
same letters as their continuous counterparts.

Because the state variable is not constrained, we can remove the control variable
using u = Ay and obtain the equivalent problem

min
y

1

2
‖y − yd‖22 +

α

2
‖Ay − ud‖22 s.t. ψ − Ay ≥ 0.

Setting v := ψ −Ay, we obtain

min
v

1

2
‖A−1(ψ − v)− yd‖22 +

α

2
‖ψ − v − ud‖22 s.t. v ≥ 0.

Defining vd := yd −A−1ψ and ψd := ud − ψ, we finally obtain the convex problem

min
v
f(v) :=

1

2
‖A−1v + vd‖22 +

α

2
‖v + ψd‖22 s.t. v ≥ 0.

Using the KKT theory, it follows that this convex quadratic optimization problem is
equivalent to the linear complementarity problem

v ≥ 0, F (v) ≥ 0, vTF (v) = 0
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Figure 1: Optimal state (left) and optimal control (right) for Example 4.1

Table 2: Numerical results for Example 4.1

N 50 100 150 200 250 300
o. it. 10 10 9 13 16 15

avg. i. it. 6.3 20.7 38.0 25.1 31.0 37.5

with
F (v) := ∇f(v) = (A−1A−1 + αI)v + A−1vd + αψd.

At this stage we can apply Algorithm 2.1 using the same parameter setting as in the pre-
vious subsection. In order to solve the corresponding linear least squares problem (24)
inexactly, we apply the LSQR method with the same termination criteria as described
above.

The matrix Hk arising in the subproblem (24) has the structure from (27), (28) with
F ′(v) = A−1A−1 + αI. Since we only need to compute matrix-vector products of the
form Hkv and HT

k u for certain vectors v and u, respectively, and since the matrix A
corresponds to the standard five-point finite difference approximation of the negative
Laplacian, these matrix-vector products can be computed quite efficiently by, e.g., a
fast sine transform in only O(N2 log2N) arithmetic operations which is not much more
than O(n) flops.

We apply our method to two examples taken from [1] (also used as test problems
in, e.g., [31, 18]).

Example 4.1 (Control Constraints) The data are α = 0.01, ψ ≡ 0, ud ≡ 0 and
yd(x1, x2) = sin(2πx1) sin(2πx2) exp(2x1)/6. The optimal state and control are depicted
in Figure 1.

We present our numerical results (number of outer iterations and average number
of inner LSQR iterations) for this example in Table 2 using different discretizations
N ∈ N. Note that the dimension of the corresponding complementarity problem is
n = N2.
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Figure 2: Optimal state (left) and optimal control (right) for Example 4.2

Table 3: Numerical results for Example 4.2

N 50 100 150 200 250 300
o. it. 12 16 10 10 11 11

avg.i. it. 6.2 12.6 21.2 37.5 45.6 45.2

Note also that the average number of inner iterations is relatively small for this example,
so there was no need to use a fancy preconditioner for the LSQR method.

Example 4.2 (Control Constraints) The data are α = 0.01, ψ ≡ 1, ud ≡ 0 and

yd(x1, x2) =

{

200x1x2(x1 − 0.5)2(1− x2), if 0 < x1 ≤ 0.5,
200x2(x1 − 1)(x1 − 0.5)2(1− x2), if 0.5 < x1 ≤ 1.

The optimal state and control are depicted in Figure 2.

Table 3 contains the number of inner and outer iterations needed by our method
to solve Example 4.2. Again, we observe a relatively small number of average inner
iterations, so there is no need to use a suitable preconditioner for this example.

Both examples clearly indicate that our inexact semismooth method can be applied
very succesfully to optimal control problems with control constraints.

4.3.2 Control Problems with Control and State Constraints

Let Ω ⊂ R
2 be a bounded domain with boundary Γ = ∂Ω. Given yd ∈ L2(Ω), ud, u1, u2, ψ ∈

L2(Γ), α ≥ 0, and suitable functions d : Ω× R → R, b : Γ × R → R, our aim is to find
a control function u ∈ L2(Γ) and a corresponding state y minimizing the functional

J(y, u) =
1

2

∫

Ω

(

y(x)− yd(x)
)2
dx+

α

2

∫

Γ

(

u(x)− ud(x)
)2
dx, (29)

subject to the state equation
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−∆y(x) + d(x, y(x)) = 0, for x ∈ Ω, (30)

the Dirichlet boundary conditions

y(x) = b(x, u(x)), for x ∈ Γ, (31)

and the control and state contraints

y(x) ≤ ψ(x) a.e. in Ω, u1(x) ≤ u(x) ≤ u2(x) a.e. in Γ. (32)

We discretize this problem is a similar way as described in the previous subsection,
where Ω is again the unit square (0, 1) × (0, 1) ⊂ R

2. After discretization we then
obtain a nonlinear programming problem of the form

min f(z) s.t. g(z) ≤ 0, h(z) = 0. (33)

The corresponding KKT conditions of (33) form a mixed complementarity problem
which may be reformulated as an overdetermined nonlinear system of equations Φ(w) =
0, with Φ : R

n × R
p ×R

m → R
n ×R

p × R
2m being defined by

Φ(w) := Φ(z, ζ, ξ) :=









∇f(z) + g′(z)T ξ + h′(z)T ζ
h(z)

λ ϕFB(ξ, g(z))
(1− λ)ϕ+(ξ, g(z))









, (34)

for some λ ∈ (0, 1) (again, we use λ = 0.9 in our implementation),

ϕFB(ξ, g(z)) :=
(

φFB(ξ1, g1(z)), . . . , φFB(ξm, gm(z)
)T ∈ R

m

and
ϕ+(ξ, g(z)) :=

(

φ+(ξ1, g1(z)), . . . , φ+(ξm, gm(z)
)T ∈ R

m.

We note that the last m components are again used in order to reduce the complemen-
tarity gap at the current point z.

We now follow [21] and try to achieve the form (33) by choosing a number N ∈ N,
a stepsize h = 1/(N + 1), considering the mesh points

xij , 0 ≤ i, j ≤ N + 1,

and defining the following sets of indices (i, j), residing either in the domain Ω or on
the boundary Γ:

I(Ω) := {(i, j) | 1 ≤ i, j ≤ N + 1},
I(Γ) := {(i, j) | i = 1, . . . , N, j = 0 or j = N + 1,

j = 1, . . . , N, i = 0 or i = N + 1 }.
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Obviously, these index sets have the cardinality |I(Ω)| = N2 and |I(Γ)| = 4N , respec-
tively.

The optimization variable z in (33) is taken as the vector

z := ((yij)(i,j)∈I(Ω)∪I(Γ), (uij)(i,j)∈I(Γ)) ∈ R
N2+8N .

Since we have Dirichlet boundary conditions, the dimension of the optimization variable
z can be reduced to a vector in the smaller space R

N2+4N by determining the state
variables (yij)(i,j)∈I(Γ) out of the Dirichlet conditions (31).

The discretized form of the cost function (29) then becomes

f(z) :=
h2

2

∑

(i,j)∈I(Ω)

(yij − yd,ij)2 +
αh

2

∑

(i,j)∈I(Γ)

(uij − ud,ij)2.

The application of the five-point finite difference approximation of −∆ to the elliptic
equation (30) yields the following equality constraints for all (i, j) ∈ I(Ω):

hij(z) := 4yij − yi+1,j − yi−1,j − yi,j+1 − yi,j−1 + h2d(xij , yij) = 0.

Note that the Dirichlet conditions (31) are used in the above equation to substitute the
variables (yij)(i,j)∈I(Γ), so we have h : R

N2+4N → R
N2

.
The control and state inequality constraints (32) yield the inequality constraints

g : R
N2+4N → R

N2+8N defined by

gij(z) := yij − ψij ≤ 0 ∀(i, j) ∈ I(Ω),
gij(z) := −uij + u1,ij ≤ 0 ∀(i, j) ∈ I(Γ),
gn+i,n+j(z) := uij − u2,ij ≤ 0 ∀(i, j) ∈ I(Γ).

In summary, we obtain a problem of the form (33) and therefore get the corresponding
equation reformulation Φ(w) = 0 using certain Lagrange multipliers ζ = (ζij)(i,j)∈I(Ω)

and ξ = (ξij)(i,j)∈I(Ω)∪I(Γ)∪I(Γ).

Example 4.3 (Control and State Constraints) This example is taken from [21]
and has the following data

on Ω : −∆y(x) = 20, y(x) ≤ 3.5, yd(x) = 3 + 5x1(x1 − 1)x2(x2 − 1),
on Γ : y(x) = u(x), 0 ≤ u(x) ≤ 10, ud(x) ≡ 0, α = 0.01.

The cost function evaluated at the optimal control and state by the authors in [21] is
f(ȳ, ū) = 0.196525 for a discretization factor N = 99. The optimal state and adjoint
variable ζ are depicted in Figure 3. The control variable is depicted in Figure 4.

Example 4.4 (Control and State Constraints) This example is again taken from
[21] and has the same data as Example 4.3 except that α = 0. A singular control is
obtained. The cost function evaluated at the optimal control and state by the autors
in [21] is f(ȳ, ū) = 0.096695 for a discretization factor N = 99. The optimal state and
adjoint variable ζ are depicted in Figure 5. The control variable is shown in Figure 6.
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Figure 3: Optimal state (left) and adjoint variable (right) for Example 4.3
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Figure 4: Optimal control for Example 4.3
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Figure 5: Optimal state (left) and adjoint variable (right) for Example 4.4

21



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Figure 6: Optimal control for Example 4.4
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Figure 7: Optimal state (left) and adjoint variable (right) for Example 4.5

Example 4.5 (Control and State Constraints) This is the third example from [21]
and has the same data as Example 4.3 except that the state and control constraints are
more restrictive:

on Ω : −∆y(x) = 20, y(x) ≤ 3.2, yd(x) = 3 + 5x1(x1 − 1)x2(x2 − 1),
on Γ : y(x) = u(x), 1.6 ≤ u(x) ≤ 2.3 ud(x) ≡ 0, α = 0.01.

The optimal state and adjoint variable ζ are depicted in Figure 7. The control variable
is shown in Figure 8. The cost function evaluated at the optimal control and state by
the authors in [21] is f(ȳ, ū) = 0.321010 when using N = 99.

Example 4.6 (Control and State Constraints) This is the fourth example from
[21] and has the same data as Example 4.5 except that α = 0. We obtain a bang-bang
optimal control. The optimal state and adjoint variable ζ are depicted in Figure 9.
The control variable is shown in Figure 10. The cost function evaluated at the optimal
control and state by the authors in [21] is f(ȳ, ū) = 0.249178 for N = 99.

Note that, after discretization of these examples, we obtain a nonlinear programming
problem (33) with convex objective function f and linear equality and linear inequality
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Figure 8: Optimal control for Example 4.5
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Figure 9: Optimal state (left) and adjoint variable (right) for Example 4.6
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Figure 10: Optimal control for Example 4.6
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constraints h and g. This implies the equivalence between (33) and the overdetermined
system of equations Φ(x) = 0 from (34).

We therefore applied Algorithm 2.1 using the same parameters as in the previous
subsections. However, without a suitable preconditioner, LSQR was not able to solve
the larger subproblems successfully. Therefore we had to find a suitable preconditioner
M in order to improve the performance of the LSQR method. To this end, we note
that the matrix Hk from the least squares subproblem (24) has the following structure
for all test problems from Examples 4.3–4.6:

Hk =































1
(N+1)2

I 0 A I 0 0

0 α
N+1

I B 0 −I I

A BT 0 0 0 0
λD1 0 0

0 −λD2 0 λD4

0 λD3 0

(λ− 1)D̃1 0 0

0 (1− λ)D̃2 0 (λ− 1)D̃4

0 (λ− 1)D̃3 0































,

where matrix A ∈ R
N2

×N2

is the five-point difference approximation to the negative
Laplace operator, B ∈ R

4N×N2

a sparse matrix with entries 0 or −1, and Di, D̃i, i =
1, 2, 3 are diagonal matrices of suitable dimension.

Taking into account this structure, we decided to take the matrix

M =









0 0 A
0 1

N+1
I B 0

A BT 0
0 I









as a preconditioner for the LSQR matrix since this matrix is both nonsingular and may
be viewed as a suitable approximation to the leading block of Hk. Moreover, we can
solve linear systems involving M once again very efficiently by a fast sine transform. The
numerical results obtained with Algorithm 2.1 using this preconditioner are summerized
in Table 4 using different discretizations N ∈ N. The columns in Table 4 have the same
meaning as those for Table 1 except that we now have one additional column which
shows the optimal value f(ȳ, ū) of the cost function obtained by our method. Note
that, for N = 100, this value is always very close to the corresponding results presented
in [21].

Table 4: Numerical results for optimal control problems
with mixed constraints

Example N Dim o.it. avg.i.it. Ψ(wf) ‖∇Ψ(wf)‖∞ f(ȳ, ū)
50 8100 14 42.4 7.99e-09 6.19e-05 1.882782e-01
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Table 4: Numerical results for optimal control problems
with mixed constraints (continued)

Example N Dim o.it. avg.i.it. Ψ(wf) ‖∇Ψ(wf)‖∞ f(ȳ, ū)
4.3 100 31200 13 55.1 3.79e-10 8.48e-06 1.965488e-01

150 69300 23 96.5 3.53e-09 3.62e-05 1.993628e-01
50 8100 12 53.1 5.30e-10 2.63e-06 8.939136e-02

4.4 100 31200 14 56.9 9.17e-07 9.79e-07 9.659419e-02
150 69300 21 116.3 3.37e-07 7.93e-07 1.000500e-01
50 8100 77 1004.5 3.37e-09 5.09e-05 3.069800e-01

4.5 100 31200 55 516.1 2.48e-06 6.35e-07 3.195118e-01
150 69300 67 596.4 2.64e-06 7.88e-07 3.230811e-01
50 8100 84 1172.1 3.67e-09 5.02e-05 2.358106e-01

4.5 100 31200 57 484.4 2.48e-06 4.45e-07 2.474559e-01
150 69300 75 702.1 2.27e-06 5.43e-07 2.506512e-01

Table 4 shows that we are able to solve all optimal control problems with mixed
constraints from Examples 4.3–4.6. The number of outer iterations is quite reasonable
for all test runs. Also the number of inner iterations is at least acceptable taking into
account the overall dimension of the problems.

4.4 Obstacle Problems

Let Ω ⊂ R
2 be a given domain with boundary Γ = ∂Ω. The obstacle problem consists

in finding the equilibrium position of an elastic membrane subject to en external force
f and an obstacle ψ. Hence the infinite-dimensional problem is to minimize the total
energy

E(u) :=
1

2

∫

Ω

‖∇u‖2dx−
∫

Ω

fudx,

subject to the constraint
u ≥ ψ a.e. in Ω.

The optimality conditions for this infinite-dimenional problem lead to a variational
inequality which, under a weak regularity condition, is equivalent to the following com-
plementarity problem

−∆u ≥ f on Ω,

u ≥ ψ on Ω,

(−∆u − f)(u− ψ) = 0 on Ω,

u ≡ 0 on Γ.

(35)

In order to discretize this problem, we take once again the standard rectangle Ω =
(0, 1) × (0, 1) and denote by A the five-point finite difference approximation to the
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negative Laplace operator on a uniform grid with stepsize h := 1/(n + 1) for some
N ∈ N. Then, setting v := u − ψ, the discretized problem can be reformulated as a
nonlinear complementarity problem

v ≥ 0, F (v) ≥ 0, vTF (v) = 0 (36)

with F (v) := A(v + ψ) − f . Using f = f(v) := λe−ψ−v for some parameter λ ≥ 0, we
obtain the obstacle Bratu problem from [22].

We apply Algorithm 2.1 to this problem using the particular data ψ ≡ −4, λ := 1
and the same parameters as in the previous subsections. We use the matrix A as a
preconditioner for the inner LSQR method. Note again that a linear system with this
matrix can be solved very efficiently. The numerical results are summarized for different
discretizations in Table 5.

Table 5: Numerical results for the obstacle Bratu prob-
lem

N o.it avg.i.it Ψ(xf ) ‖∇Ψ(xf)‖∞
100 7 9.9 2.67e-15 4.13e-05
200 7 11.6 3.28e-11 5.58e-02
300 8 13.9 3.55e-12 1.78e-04
400 8 14.1 6.59e-12 4.86e-04
500 8 14.2 1.05e-11 1.15e-03

Note that both the number of outer iterations and the average number of inner
iterations is extremely small for this example. This is consistent with the observation
made in [18] for a somewhat different method.

5 Conclusions

We have shown that the good theoretical properties of the exact semismooth Newton
method applied to the least squares formulation with additional gap reduction for com-
plementarity problems from [19] can be carried over to a inexact semismooth method.
We also discussed several practical aspects of this inexact method when applied to
several large-scale problems from MCPLIB, optimal control and obstacle problems.
The main computational burden is then to solve a linearized least squares problem
at each iteration. Here we used the LSQR method from [24] and discussed different
preconditioners depending on the structure of the particular large-scale problem. An-
other alternative would be to use the modification of LSQR recently proposed in [16].
However, a successful application of that method also requires extra knowledge of the
problem structure. We leave this as a future research topic.

26



References

[1] M. Bergounioux, M. Haddou, M. Hintermüller, and K. Kunisch (2001). A compar-
ison of a Moreau-Yosida based active set strategy and interior point methods for
constrained optimal control problems. SIAM J. Optim., 11, 495–521.

[2] B. Chen, X. Chen, and C. Kanzow (2000). A penalized Fischer-Burmeister NCP-
function. Math. Program., 88, 211–216.

[3] F.H. Clarke (1983). Optimization and Nonsmooth Analysis. John Wiley & Sons,
New York (reprinted by SIAM, Philadelphia, 1990).

[4] R.W. Cottle, J.-S. Pang, and R.E. Stone (1992). The Linear Complementarity
Problem. Academic Press, San Diego.

[5] T. De Luca, F. Facchinei, and C. Kanzow (1996). A semismooth equation approach
to the solution of nonlinear complementarity problems. Math. Program., 75, 407–
439.

[6] S.P. Dirkse and M.C. Ferris (1995). MCPLIB: A collection of nonlinear mixed
complementarity problems. Optim. Methods Softw., 5, 319–345.

[7] F. Facchinei (1995). Minimization of SC1 functions and the Maratos effect. Oper.
Res. Letters, 17, 131–137.

[8] F. Facchinei and C. Kanzow (1997). A nonsmooth inexact Newton method for the
solution of the large-scale nonlinear complementarity problems. Math. Program.,
76, 493-512.

[9] F. Facchinei and J.S. Pang (2003). Finite-Dimensional Variational Inequalities and
Complementarity Problems, Volume I. Springer, New York.

[10] F. Facchinei and J.S. Pang (2003). Finite-Dimensional Variational Inequalities and
Complementarity Problems, Volume II. Springer, New York.

[11] F. Facchinei and J. Soares (1997). A new merit function for nonlinear complemen-
tarity problems and a related algorithm. SIAM J. Optim., 7, 225–247.

[12] M.C. Ferris, C. Kanzow, and T.S. Munson (1999). Feasible descendent algorithms
for mixed complemetarity problems. Math. Program., 86, 475–497.

[13] M.C. Ferris and J.S. Pang (1997). Engineering and economic applications of com-
plementarity problems. SIAM Rev. 39, 669–713.

[14] A. Fischer (1992). A special Newton-type optimization method. Optimiztion 24,
269–284.

27



[15] L. Grippo, F. Lampariello, and S. Lucidi (1996). A nonmonotone line search tech-
nique for Newton’s method. SIAM J. Numer. Anal., 23, 707–716.

[16] M. Jacobsen, P.C. Hansen, and M.A. Saunders (2003). Subspace preconditioned
LSQR for discrete ill-posed problems. BIT Num. Math. 43, 975–989.

[17] H. Jiang (1999). Global convergence analysis of the generalized Newton and Gauss-
Newton methods of the Fischer-Burmeister equation for the complementarity prob-
lem. Math. Oper. Res., 24, 529–543.

[18] C. Kanzow (2004). Inexact semismooth Newton methods for large-scale comple-
mentarity problems. Optim. Meth. and Soft. 19, 309–325.

[19] C. Kanzow and S. Petra (2004). On a semismooth least squares formulation of
complementarity problems with gap reduction. Optim. Meth. and Soft., 19, 507–
525.

[20] Z.Q. Luo and P. Tseng (1997). A new class of merit functions for the nonlinear
complementarity problem. In: M.C. Ferris and J.S. Pang (Eds.), Complementarity
and Variational Problems: State of the Art, 204–225, SIAM, Philadelphia.

[21] H. Maurer and H.D. Mittelmann (2000). Optimization Techniques for Solving El-
liptic Control Problems with Control and State Constraints: Part 1. Boundary
Control. Comp. Optim. Appl., 16, 29–55.

[22] E. Miersemann and H.D. Mittelmann (1989). Continuation for parameterized non-
linear variational inequalities. J. Comp. App. Math., 26, 23–34.
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