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ABSTRACT. Motions of physical objects relative to a camera as observer naturally occur in everyday
live and in many scientific applications. Optical flow represents the corresponding motion induced on
the image plane. This paper describes the basic problems and concepts related to optical flow estimation
together with mathematical models and computational approaches to solve them. Emphasis is placed on
common and different modelling aspects and to relevant research directions from a broader perspective.
The state of the art and corresponding deficiencies are reported along with directions of future research.
The presentation aims at providing an accessible guide for practitioners as well as stimulating research
work in relevant fields of mathematics and computer vision.
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3.4. Regularization 22
3.4.1. Regularity Priors 22
3.4.2. Distance Functions 23
3.4.3. Adaptive, Anisotropic and Non-local Regularization 23
3.5. Further Extensions 24
3.5.1. Spatio-Temporal Approach 24
3.5.2. Geometrical Prior Knowledge 25
3.5.3. Physical Prior Knowledge 26
3.6. Algorithms 27
3.6.1. Smooth Convex Functionals 28
3.6.2. Non-smooth convex functionals 28
3.6.3. Non-convex functionals 29
4. The Assignment Approach to Optical Flow Estimation 32
4.1. Local Approaches 32
4.2. Assignment by Displacement Labeling 33
4.3. Variational Image Registration 36
5. Open Problems and Perspectives 37
5.1. Unifying Aspects: Assignment by Optimal Transport 37
5.2. Motion Segmentation, Compressive Sensing 39
5.3. Probabilistic Modelling and Online Estimation 41
6. Conclusion 42
Appendix A. Basic Notation 43
Appendix B. Cross-References 45
References 46



OPTICAL FLOW 3

1. INTRODUCTION

1.1. Motivation, Overview. Motion of image data belongs to the crucial features that enable low-
level image analysis in natural vision systems, in machine vision systems, and the analysis of a major
part of stored image data in the format of videos, as documented for instance by the fast increas-
ing download rate of YouTube. Accordingly, image motion analysis has played a key role from the
beginning of research in mathematical and computational approaches to image analysis.

FIGURE 1. Some application areas of image processing that essentially rely on image
motion analysis. LEFT: Scene analysis (depth, independently moving objects) with
a camera mounted in a car. CENTER: Flow analysis in remote sensing. RIGHT:
Measuring turbulent flows by particle image velocimetry.

Fig. 1 illustrates few application areas of image processing, among many others, where image mo-
tion analysis is deeply involved. Mathematical models for analyzing such image sequences boil down
to models of a specific instance of the general data analysis task, that is to fuse prior knowledge with
information given by observed image data. While adequate prior knowledge essentially depends on
the application area as Fig. 1 indicates, the processing of observed data mainly involves basic princi-
ples that apply to any image sequence. Correspondingly, the notion of optical flow, informally defined
as determining the apparent instantaneous velocity of image structure, emphasizes the application-
independent aspects of this basic image analysis task.

Due to this independency, optical flow algorithms provide a key component for numerous ap-
proaches to applications across different fields. Major examples include motion compensation for
video compression, structure from motion to estimate 3D scene layouts from an image sequences, vi-
sual odometry and incremental construction of mappings of the environment by autonomous systems,
estimating vascular wall shear stress from blood flow image sequences for biomedical diagnosis, to
name just a few.

This chapter aims at providing a concise and up-to-date account of mathematical models of optical
flow estimation. Basic principles are presented along with various prior models. Application specific
aspects are only taking into account at a general level of mathematical modeling (e.g., geometric or
physical prior knowledge). Model properties favoring a particular direction of modeling are high-
lighted, while keeping an eye on common aspects and open problems. Conforming to the editor’s
guidelines, references to the literature are confined to a – subjectively defined – essential minimum.

1.2. Organization. Section 2 introduces a dichotomy of models used to present both essential differ-
ences and common aspects. These classes of models are presented in Sections 3 and 4. The former
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class comprises those algorithms that perform best on current benchmark datasets. The latter class be-
comes increasingly more important in connection with motion analysis of novel, challenging classes
of image sequences and videos. While both classes merely provide different viewpoints on the same
subject – optical flow estimation and image motion analysis – distinguishing them facilitates the pre-
sentation of various facets of relevant mathematical models in current research. Further relationships,
unifying aspects together with some major open problems and research directions, are addressed in
Sect. 5.
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FIGURE 2. LEFT: Image motion can only be computed by recognizing objects as
the same in subsequent time frames, based on some notion of equivalence (invariance)
and some distance function. In low-level vision, “object” means some prominent lo-
cal image structure in terms a feature mapping g(x, t) ∈ Rp, p ≥ 1. The correspon-
dence problem amounts to compute a corresponding assignment {g(xi, t)}i∈[m] →
{g(xj , t + δt)}j∈[n]. The corresponding objective defines the data term of a varia-
tional approach. RIGHT: Differential approaches to image motion computation are
based on smooth feature mappings g(x, t) and aim at solving the assignment problem
g
(
x(t), t

)
→ g

(
x(t + δt), t + δt

)
. The figure illustrates the basic case of a scalar-

valued signal g(x, t) translating with constant speed u and the estimate (2.14) based
on the differential motion approach, as discussed in Sect. 2.2.

2. BASIC ASPECTS

2.1. Invariance, Correspondence Problem. Image motion computation amounts to define some no-
tion of invariance and the recognition in subsequent time frames of corresponding objects, defined by
local prominent image structure in term of a feature mapping g(x) whose values are assumed to be
conserved during motion. As Fig. 2, left panel, illustrates, invariance only holds approximately due to
the imaging process and changes of viewpoint and illumination. Consequently, some distance function

ρ
(
g(xj , t+ δt)− g(xi, t)

)
(2.1)

has to be used in order to compute an optimal assignment

{g(xi, t)}i∈[m] → {g(xj , t+ δt)}j∈[n]. (2.2)

A vast literature exists on definitions of feature mappings g(x, t), distance functions, and their empir-
ical evaluation in connection with image motion. Possible definitions include

• image grayvalue or color,
• grayvalue or color gradient,
• output of analytic bandpass filters (e.g. [86, 23]),
• more complex feature descriptors including SIFT [82] and SURF [17],
• censor voting, [27], local patches or feature groupings,

together with a corresponding invariance assumption, i.e. that g(x, t) is conserved during motion
(cf. Fig. 2, left panel). Figure 3 illustrates the most basic approaches used in the literature. Re-
cent examples adopting a more geometric viewpoint on feature descriptors and studying statistical
principles of patch similarity include [89, 105].

For further reference, some basic distance functions ρ : Rp → R+ are introduced below, that are
commonly applied in connection with feature mappings g(x) and partly parametrized by λ > 0 and
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FIGURE 3. (a) Lab scene ( c©CMU image database) and (b) gradient magnitude that provides
the basis for a range of feature mappings g(x, t). The image section indicated in (a)
is shown in (c), and (d) shows the same section extracted from (b). Panels (e) and (f)
illustrate these sections as surface plots. Panel (g) shows a feature map responding to
crossing grayvalue edges. (c), (d) and (g) correspond to the most basic examples of
feature mappings g(x, t) used in the literature to compute image motion, based on a
corresponding invariance assumption (cf. Fig. 2, left panel) that is plausible for video
frame rates.

0 < ε� 1. For closely related functions and the nomenclature in computer vision, see e.g. [24].

ρ2
2(z) := ‖z‖2 squared `2 distance, (2.3a)

ρ2(z) := ‖z‖ `2 distance, (2.3b)

ρ2,ε(z) :=
√
‖z‖2 + ε2 − ε smoothed `2 distance, (2.3c)

ρ1(z) := ‖z‖1 `1 distance, (2.3d)

ρ1,ε(z) :=
∑
i∈[p]

ρ2,ε(zi) smoothed `1 distance, (2.3e)

ρ2,λ(z) := min{‖z‖2, λ2} truncated squared `2 distance, (2.3f)

ρ2,λ,ε(z) := −ε log
(

e−‖z‖
2/ε + e−λ

2/ε
)

smoothed tr. sq. `2 distance. (2.3g)

Figure 4 illustrates these convex and non-convex distance functions. Functions ρ1,ε and ρ2,ε con-
stitute specific instances of the general smoothing principle to replace a lower-semicontinuous, pos-
itively homogeneous and sublinear function ρ(z) by a smooth proper convex function ρε(z), with
lim
ε↘0

ερε(z/ε) = ρ(z) (cf., e.g. [10]). Function ρ2,λ,ε(z) utilizes the log-exponential function [97,

Ex. 1.30] to uniformly approximate ρ2,λ as ε↘ 0.

2.2. Assignment Approach, Differential Motion Approach.

2.2.1. Definitions. Two basic approaches to image motion computation can be distinguished.
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FIGURE 4. LEFT: Convex distance functions (2.3a)–(2.3c). CENTER: Level lines of
the distance function ρ1,ε (2.3e). RIGHT: Non-convex distance functions (2.3f),
(2.3g).

Assignment Approach, Assignment Field: This approach aims to determine an assignment of
finite sets of spatially discrete features in subsequent frames of a given image sequence (Fig. 2,
left panel). The vector field

u(x, t), xj = xi + u(xi, t), (2.4)

representing the assignment in Eq. (2.2), is called assignment field. This approach conforms
to the basic fact that image sequences f(x, t), (x, t) ∈ Ω × [0, T ] are recorded by sampling
frames

{f(x, k · δt)}k∈N (2.5)
along the time axis.

Assignment approaches to image motion will be considered in Sect. 4.
Differential Motion Approach, Optical Flow: Starting point of this approach is the invariance

assumption (Section 2.1) that observed values of some feature map g(x, t) are conserved dur-
ing motion,

d

dt
g
(
x(t), t

)
= 0. (2.6)

Evaluating this condition yields information about the trajectory x(t) that represent the motion
path of a particular feature value g

(
x(t)

)
. The corresponding vector field

ẋ(t) =
d

dt
x(t), x ∈ Ω (2.7)

is called motion field whose geometric origin will be described in Sect. 2.3. Estimates

u(x, t) ≈ ẋ(t), x ∈ Ω (2.8)

of the motion field based on some observed time-dependent feature map g(x, t), are called
optical flow fields.

Differential motion approaches will be considered in Sect. 3.

2.2.2. Common Aspects and Differences. The assignment approach and the differential approach to
image motion are closely related. In fact, for small temporal sampling intervals,

0 < δt� 1, (2.9)

one may expect that the optical flow field multiplied by δt, u(x, t) · δt, closely approximates the
corresponding assignment field. The same symbol u is therefore used in (2.4) and (2.8) to denote the
respective vector fields.
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A conceptual difference between both approaches is that the ansatz (2.6) entails the assumption
of a spatially differentiable feature mapping g(x, t), whereas the assignment approach requires prior
decisions done at a pre-processing stage that localize the feature sets (2.2) to be assigned. The need
for additional processing in the latter case contrasts with the limited applicability of the differential
approach: The highest spatial frequency limits the speed of image motion ‖u‖ that can be estimated
reliably:

max
{
‖ωx‖∞, ‖u(x)‖‖ωx‖ : ωx ∈ supp ĝ(ω), x ∈ Ω

}
≤ π

6
. (2.10)

The subsequent section details this bound in the most simple setting for a specific but common filter
choice for estimating partial derivatives ∂ig.

2.2.3. Differential Motion Estimation: Case Study (1D). Consider a scalar signal g(x, t) = f(x, t)
moving at constant speed (cf. Fig. 2, right panel),

ẋ(t) = ẋ = u, g
(
x(t), t

)
= g
(
x(0) + ut, t

)
. (2.11)

Note that the two-dimensional function g(x, t) is a very special one generated by motion. Using the
shorthands

x := x(0), g0(x) := g(x, 0), (2.12)
g(x, t) corresponds to the translated one-dimensional signal

g(x, t) = g0(x− ut) (2.13)

due to the assumption g
(
x(t), t

)
= g
(
x(0), 0

)
= g0(x).

Evaluating (2.6) at t = 0, x = x(0) yields

u = − ∂tg0(x)

∂xg0(x)
if ∂xg0(x) 6= 0. (2.14)

Application and validity of this equation in practice depends on two further aspects: Only sampled
values of g(x, t) are given and the right-hand side has to be computed numericaly. Both aspects are
discussed next in turn.

(1) In practice, samples are observed

{g(k · δx, tδt)}k,t∈N = {g(k, t)}k,t∈N, δx = δt = 1, (2.15)

with the sampling interval scaled to 1 without loss of generality. The Nyquist-Shannon sam-
pling theorem imposes the constraint

supp |ĝ(ω)| ⊂ [0, π)2, ω = (ωx, ωt)
> (2.16)

where

ĝ(ω) = Fg(ω) =

∫
R2

g(x, t)e−i〈ω,(
x
t )〉dxdt (2.17)

denotes the Fourier transform of g(x, t). Trusting in the sensor, it may be savely assumed that
supp |ĝ0(ωx)| ⊂ [0, π). But what about the second coordinate t generated by motion? Does it
obey (2.16) such that the observed samples (2.15) truly represent the one-dimensional video
signal g(x, t)?

To answer this question, consider the specific case g0(x) = sin(ωxx), ωx ∈ [0, π] – see
Fig. 5. Eq. (2.13) yields g(x, t) = sin

(
ωx(x − ut)

)
. Condition (2.15) then requires that, for

every location x, the one-dimensional time signal gx(t) := g(x, t) satisfies supp |ĝx(ωt)| ⊂
[0, π). Applying this to the example yields

gx(t) = sin(ωtt+ ϕ0), ωt := −ωxu, ϕ0 := ωxx, (2.18)
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FIGURE 5. A sinusoid g0(x) with angular frequency ωx = π/12, translating with
velocity u = 2, generates the function g(x, t). The angular frequency of the signal
gx(t) observed at a fixed position x equals |ωt| = u ·ωx = π/6 due to (2.18). It meets
the upper bound further discussed in connection with Fig. 6 that enables accurate
numerical computation of the partial derivatives of g(x, t).

and hence the condition

|ωt| ∈ [0, π) ⇔ |u| < π

ωx
. (2.19)

It implies that equation (2.14) is only valid if, depending on the spatial frequency ωx, the
velocity u is sufficiently small.

This reasoning and the conclusion applies to general functions g(x, t), x ∈ Rd in the form
of (2.10), which additionally takes into account the effect of derivative estimation, discussed
next.

(2) Condition (2.19) has to be further restricted in practice, depending on how the partial deriva-
tives of the r.h.s. of Eq. (2.14) are numerically computed using the observed samples (2.15).
The Fourier transform

F
(
∂αg

)
(ω) = i|α|ωαĝ(ω), ω ∈ Rd+1 (2.20)

generally shows that taking partial derivatives of order |α| of g(x, t), x ∈ Rd, corresponds to
high-pass filtering that amplifies noise. If g(x, t) is vector-valued, then the present discussion
applies to the computation of partial derivatives ∂αgi of any component gi(x, t), i ∈ [p].

To limit the influence of noise, partial derivatives of the low-pass filtered feature mapping
g are computed. This removes noise and smoothes the signal, and subsequent computation of
partial derivatives becomes more accurate. Writing g(x), x ∈ Rd+1, instead of g(x, t), x ∈
R
d, to simplify the following formulas, low-pass filtering of g with the impulse response h(x)

means the convolution

gh(x) := (h ∗ g)(x) =

∫
Rd+1

h(x− y)g(y)dy, ĝh(ω) = ĥ(ω) ĝ(ω) (2.21)
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FIGURE 6. (a) Fourier transform ĥσ(ω) of the Gaussian low-pass (2.24), σ = 1. For
values σ ≥ 1, it satisfies the sampling condition supp |ĥσ(ω)| ⊂ [0, π) sufficiently ac-
curate. (b) The Fourier transform of the Derivative-of-Gaussian (DoG) filter d

dxhσ(x)
illustrates that for |ω| ≤ π/6 (partial) derivatives are accurately computed while noise
is suppressed at higher angular frequencies. (c), (d) The impulse responses hσ(x, t)
and ∂thσ(x, t) up to size |x|, |t| ≤ 2. Application of the latter filter together with
∂xhσ(x, t) to the function g(x, t) discussed in connection with Fig. 5 and evaluation
of Eq. (2.14) yield the estimate u = 2.02469 at all locations (x, t) where ∂xg(x, t) 6=
0.

whose Fourier transform corresponds to the multiplication of the respective Fourier trans-
forms. Applying (2.20) yields

F
(
∂αgh

)
(ω) = i|α|ωα

(
ĥ(ω) ĝ(ω)

)
=
(
i|α|ωαĥ(ω)

)
ĝ(ω). (2.22)

Thus, computing the partial derivative of the filtered function gh can be computed by convolv-
ing g with the partial derivative of the impulse response ∂αh. As a result, the approximation
of the partial derivative of g reads

∂αg(x) ≈ ∂αgh(x) =
(
(∂αh) ∗ g

)
(x). (2.23)

The most common choice of h is the isotropic Gaussian low-pass filter

hσ(x) :=
1

(2πσ2)d/2
exp

(
− ‖x‖

2

2σ2

)
=
∏
i∈[d]

hσ(xi), σ > 0. (2.24)

that factorizes (called separable filter) and therefore can be implemented efficiently. The
corresponding filters ∂αhσ(x), |α| ≥ 1, are called Derivative-of-Gaussian (DoG) filters.

To examine its effect, it suffices to consider any coordinate due to factorization, that is the
one-dimensional case. Fig. 6 illustrates that values σ ≥ 1 lead to filters that are sufficiently
band-limited so as to conform to the sampling theorem. The price to pay for effective noise
suppression however is a more restricted range supp |F

(
g(x, t)

)
| = [0, ωx,max], ωx,max � π,

that observed image sequence functions have to satisfy, so as to enable accurate computation
of partial derivatives, and in turn accurate motion estimates based on the differential approach.
Figure 5 further details and illustrates this crucial fact.

2.2.4. Assignment or Differential Approach? For image sequence functions g(x, t) satisfying the as-
sumptions necessary to evaluate the key equation (2.6), the differential motion approach is more con-
venient. Accordingly, much work has been devoted to this line of research up to now. In particular,
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sophisticated multiscale representations of g(x, t) enable to estimate larger velocities of image mo-
tion using smoothed feature mapping g (cf. Sect. 3.3.3). As a consequence, differential approaches
rank top at corresponding benchmark evalutions conforming to the underlying assumptions [115] and
efficient implementations are feasible [29, 55].

On the other hand, the inherent limitations of the differential approach discussed above become
increasingly more important in current applications, like optical flow computation for traffic scenes
taken from a moving car at high speed. Figure 1, right panel, shows another challenging scenario
where the spectral properties ĝ(ωx, ωt) of the image sequence function and the velocity fields to be
estimated render application of the differential approach difficult, if not impossible. In such cases, the
assignment approach is the method of choice.

Combining both approaches in a complementary way seems most promising: robust assignments
enable to cope with fast image motions, and a differential approach turns these estimates into spatially
dense vector fields. This point is taken up in Sect. 5.1.

2.2.5. Basic Difficulties of Motion Estimation. This section concludes with a list of some basic aspects
to be addressed by any approach to image motion computation:

(i) Definition of a feature mapping g assumed to be conserved during motion (Sect. 2.1).
(ii) Coping with lack of invariance of g, change of appearance due to varying viewpoint and illumi-

nation (Sect. 3.3.1, 3.3.2).
(iii) Spatial sparsity of distinctive features (Sect. 3.4).
(iv) Coping with ambiguity of locally optimal feature matches (Sect. 4.2).
(v) Occlusion and disocclusion of features.

(vi) Consistent integration of available prior knowledge, regularization of motion field estimation
(Sect. 3.5.2, 3.5.3).

(vii) Runtime requirements (Sect. 3.6).

x

X

W

FIGURE 7. The basic pinhole model of the mathematically ideal camera. Scene
points X are mapped to image points x by perspective projection.

2.3. Two-View Geometry, Assignment and Motion Fields. This section collects few basic relation-
ships related to the Euclidean motion of a perspective camera relative to a 3D scene, that induces both
the assignment field and the motion field on the image plane, as defined in Sect. 2.2.1 by (2.4) and
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(2.7). Figures 7 and 12 illustrates these relationships. References [57, 45] provide comprehensive
expositions.

It is pointed out once more that assignment and motion fields are purely geometrical concepts.
The explicit expressions (2.43) and (2.53b) illustrate how discontinuities of these fields correspond
to discontinuities of depth, or to motion boundaries that separate regions in the image plane of scene
objects (or the background) with different motions relative to the observing camera. Estimates of
either field will be called optical flow, to be discussed in subsequent sections.

2.3.1. Two-View Geometry. Scene and corresponding image points are denoted by X ∈ R3 and x ∈
R

2, respectively. Both are incident with the line λx, λ ∈ R, through the origin. Such lines are points
of the projective plane denoted by y ∈ P2. The components of y are called homogeneous coordinates
of the image point x, whereas x and X are the inhomogeneous coordinates of image and scene points,
respectively. Note that y stands for any representative point on the ray connecting x and X . In other
words, when using homogeneous coordinates, scale factors do not matter. This equivalence is denoted
by

y ' y′ ⇔ y = λy′, λ 6= 0. (2.25)

Figure 7 depicts the mathematical model of a pinhole camera with the image plane located at X3 =
1. Perspective projection corresponding to this model connects homogeneous and inhomogeneous
coordinates by

x =

(
x1

x2

)
=

1

y3

(
y1

y2

)
. (2.26)

A particular representative y with unknown depth y3 = X3 equals the scene point X . This reflects
the fact that scale cannot be inferred from a single image. The 3D space R3 \ {0} corresponds to the
affine chart {y ∈ P2 : y3 6= 0} of the manifold P2.

Similar to representing an image point x by homogeneous coordinates y, it is common to represent
scene points X ∈ R3 by homogeneous coordinates Y = (Y1, Y2, Y3, Y4)> ∈ P3, in order to linearize
transformations of 3D space. The connection analogous to (2.26) is

X =
1

Y4

Y1

Y2

Y3

 . (2.27)

Rigid (Euclidean) transformations are denoted by {h,R} ∈ SE(3) with translation vector h and proper
rotation matrix R ∈ SO(3) characterized by R>R = I, detR = +1. Application of the transforma-
tion to a scene point X and some representative Y reads

RX + h and QY, Q :=

(
R h
0> 1

)
, (2.28)

whereas the inverse transformation {−R>h,R>} yields

R>(X − h) and Q−1Y, Q−1 =

(
R> −R>h
0> 1

)
. (2.29)

The nonlinear operation (2.26), entirely rewritten with homogeneous coordinates, takes the linear form

y = PY, P =

1 0 0 0
0 1 0 0
0 0 1 0

 = (I3×3, 0), (2.30)
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with the projection matrix P and external or motion parameters {h,R}. In practice, additional inter-
nal parameters characterizing real cameras to the first order of approximation are taken into account
in terms of a camera matrix K and the corresponding modification of (2.30),

y = PY, P = K(I3×3, 0). (2.31)

As a consequence, the transition to normalized (calibrated) coordinates

ỹ := K−1y (2.32)

corresponds to an affine transformation of the image plane.
Given an image point x, taken with a camera in the canonical position (2.30), the corresponding ray

meets the scene point X , see Figure 12 (b). This ray projects in a second image, taken with a second
camera positioned by {h,R} relative to the first camera and with projection matrix

P ′ = K ′R>(I,−h), (2.33)

to the line l′, on which the projection x′ of X corresponding to x must lie. Turning to homogeneous
coordinates, an elementary computation shows that the fundamental matrix

F := K ′−>R>[h]×K
−1 (2.34)

maps y to the epipolar line l′,
l′ = Fy. (2.35)

This relation is symmetrical in that F> maps y′ to the corresponding epipolar line l in the first image,

l = F>y′. (2.36)

The epipoles e, e′ are the image points corresponding to the projection centers. Because they lie on l
and l′ for any x′ and x, respectively, it follows that

Fe = 0, F>e′ = 0. (2.37)

The incidence relation x′ ∈ l′ algebraically reads 〈l′, y′〉 = 0. Hence by (2.35),

〈y′, Fy〉 = 0 (2.38)

This key relation constrains the correspondence problem x ↔ x′ for arbitrary two views of the same
unknown scene point X . Rewriting (2.38) in terms of normalized coordinates by means of (2.32)
yields

〈y′, Fy〉 = 〈K ′−1y′,K ′>FK(K−1y)〉 = 〈K ′−1y′, E(K−1y)〉 (2.39)
with the essential matrix E that, due to (2.34) and the relation [Kh]× ' K−>[h]×K

−1, is given by

E = K ′>FK = R>[h]×. (2.40)

Thus, essential matrices are parametrized by transformations {h,R} ∈ SE(3) and therefore form a
smooth manifold embedded in R3×3.

2.3.2. Assignment Fields. Throughout this section, the internal camera parameters K are assumed to
be known and hence normalized coordinates (2.32) are used. As a consequence,

K = I (2.41)

is set in what follows.
Suppose some motion h,R of a camera relative to a 3D scene causes the image point x of a fixed

scene pointX to move to x′ in the image plane. The corresponding assignment vector u(x) represents
the displacement of x in the image plane,

x′ = x+ u(x), (2.42)



14 F. BECKER, S. PETRA, C. SCHNÖRR

which due to (2.29) and (2.26) is given by

u(x) =
1

〈r3, X − h〉

(
〈r1, X − h〉
〈r2, X − h〉

)
− 1

X3

(
X1

X2

)
. (2.43)

Consider the special case of pure translation, i.e. R = I, ri = ei, i = 1, 2, 3. Then

u(x) =
1

X3 − h3

(
X1 − h1

X2 − h2

)
− 1

X3

(
X1

X2

)
(2.44a)

=
1

h̃3 − 1

((
h̃1

h̃2

)
− h̃3

(
x1

x2

))
, h̃ :=

1

X3
h. (2.44b)

The image point xe where the vector field u vanishes, u(xe) = 0, is called focus of expansion (FOE)

xe =
1

h̃3

(
h̃1

h̃2

)
. (2.45)

xe corresponds to the epipole y = e since Fe ' R>[h]×h = 0.
Next the transformation is computed of the image plane induced by the motion of the camera in

terms of projection matrices P = (I, 0) and P ′ = R>(I,−h) relative to a plane in 3D space

〈n,X〉 − d = n1X1 + n2X2 + n3X3 − d = 0, (2.46)

with unit normal n, ‖n‖ = 1, and with signed distance d of the plane from the origin 0. Setting
p = ( n

−d ), Eq. (2.46) reads
〈p, Y 〉 = 0. (2.47)

In order to compute the point X on the plane satisfying (2.46) that projects to the image point y, the
ray Y (λ) =

(
λy
1

)
, λ ∈ R, is intersected with the plane.

〈p, Y (λ)〉 = λ〈n, y〉 − d = 0 ⇒ λ =
d

〈n, y〉
, Y =

( d
〈n,y〉y

1

)
'
(

y
1
d〈n, y〉

)
. (2.48)

Projecting this point onto the second image plane yields

y′ = P ′Y (λ) = R>
(
y − 1

d
〈n, y〉h

)
= R>(I − 1

d
hn>)y

=: Hy

(2.49)

Thus, moving a camera relative to a 3D plane induces a homography (projective transformation) H of
P

2 which by virtue of (2.26) yields an assignment field u(x) with rational components.

2.3.3. Motion Fields. Motion fields (2.7) are the instantaneous (differential) version of assignment
fields. Consider a smooth path {h(t), R(t)} ⊂ SE(3) through the identity {0, I} and the correspond-
ing path of a scene point X ∈ R3

X(t) = h(t) +R(t)X, X = X(0). (2.50)

Let R(t) be given by a rotational axis q ∈ R
3 and a rotation angle ϕ(t). Using Rodrigues’ formula

and the skew-symmetric matrix [q]× ∈ so(3) with ϕ̇ = ϕ̇(0) := ‖q‖, matrix R(t) takes the form

R(t) = exp(t[q]×) = I +
sin(ϕ̇t)

ϕ̇t
t[q]× +

1− cos(ϕ̇t)

(ϕ̇t)2
t2[q]2×. (2.51)

(2.50) then yields
Ẋ(0) = v + [q]×X, v := ḣ(0), (2.52)
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where v is the translational velocity at t = 0. Differentiating (2.26) with y = X (recall assumption
(2.41)) and inserting (2.52), gives

d

dt
x =

1

X2
3

(
X3Ẋ1 −X1Ẋ3

X3Ẋ2 −X2Ẋ3

)
=

1

X3

(
Ẋ1 − x1Ẋ3

Ẋ2 − x2Ẋ3

)
(2.53a)

=
1

X3

[(
v1

v2

)
− v3

(
x1

x2

)]
+

(
q2 − q3x2 − q1x1x2 + q2x

2
1

−q1 + q3x1 + q2x1x2 − q1x
2
2

)
. (2.53b)

Comparing (2.53b) to (2.43) and (2.44b) shows a similar structure of the translational part with FOE

xv :=
1

v3

(
v1

v2

)
, (2.54)

whereas the rotational part merely contributes an incomplete second-order degree polynomial to each
component of the motion field, that do not depend on the scene structure in terms of the depth X3.

Consider the special case of a motion field induced by the relative motion of a camera to a 3D plane
given by (2.46) and write

1

X3
=

1

d

(
n3 +

(
n1

n2

)>(
x1

x2

))
. (2.55)

Insertion into (2.53b) shows that the overall expression for the motion fields takes a simple polynomial
form.

2.4. Early Pioneering Work. It deems proper to the authors to refer at least briefly to early pio-
neering work related to optical flow estimation, as part of a survey paper. The following references
constitute just a small sample of the rich literature.

The information of motions fields, induced by the movement of an observer relative to a 3D scene,
was picked out as a central theme more than three decades ago [81, 95]. Kanatani [72] studied the
representation of SO(3) and invariants in connection with the space of motion fields induced by the
movement relative to a 3D plane. Approaches to estimating motion fields followed soon, by deter-
mining optical flow from local image structure [84, 91, 63, 133, 131, 132]. Poggio and Verri [122]
pointed out both the inexpedient, restrictive assumptions making the invariance assumption (2.6) hold
in the simple case g(x) = f(x) (e.g. Lambertian surfaces in the 3D scene), and the stability of struc-
tural (topological) properties of motion fields (like e.g. the FOE (2.45)). The local detection of image
translation as orientation in spatio-temporal frequency space, based on the energy and the phase of
collections of orientation-selective complex-valued bandpass filters (lowpass filters shifted in Fourier
space, like e.g. Gabor filters), was addressed by [2, 60, 46], partially motivated by related research on
natural vision systems.

The variational approach to optical flow was pioneered by Horn and Schunck [68], followed by
various extensions [92, 6, 144] including more mathematically oriented accounts [109, 64, 130]. The
work [129] classified various convex variational approaches that have unique unique minimizers.

The computation of discontinuous optical flow fields, in terms of piecewise parametric represen-
tations, was considered by [128, 24], whereas the work [118] studied the information contained in
correspondences induced by motion fields over a longer time period. Shape-based optimal control of
flows determined on discontinuous domains as control variable, was introduced in [110], including
the application of shape derivative calculus that became popular later on in connection with level sets.
Markov random fields and the Bayesian viewpoint on the non-local inference of discontinuous optical
flow fields were introduced in [62]. The challenging aspects of estimating both motion fields and their
segmentation in a spatio-temporal framework, together with inferring the 3D structure, has remained
a topic of research until today.
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This brief account shows that most of the important ideas appeared early in the literature. On the
other hand, it took many years until first algorithms made their way into industrial applications. A lot
of work remains to be done by addressing various basic and applied research aspects. In comparison
to the fields of computer vision, computer science and engineering, not much work has been done by
the mathematical community on motion based image sequence analysis.

2.5. Benchmarks. Starting with the first systematic evaluation in 1994 by Baron et al. [15], bench-
marks for optical flow methods have stimulated and steered the developement of new algorithms in
this field. The Middlebury database [14] further accelerated this trend by introducing an online rank-
ing system and defining challenging data sets, which specifically address different aspects of flow
estimation such as large displacements or occlusion.

The recently introduced KITTI Vision Benchmark Suite [47] concentrates on outdoor automotive
sequences that are affected by disturbances such as illumination changes and reflections, which optical
flow approaches are expected to be robust against.

While real imagery requires sophisticated measurement equipment to capture reliable reference
information, synthetic sequences such as the novel MPI Sintel Flow Dataset [32] come with free
ground truth. However, enormous efforts are necessary to realistically model the scene complexity
and effects found in reality.
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3. THE VARIATIONAL APPROACH TO OPTICAL FLOW ESTIMATION

In contrast to assignment methods, variational approaches to estimating the optical flow employ a
continuous and dense representation of the variables u : Ω 7→ R

2. The model describing the agree-
ment of u with the image data defines the data term ED(u). It is complemented by a regularization
term ER(u) encoding prior knowledge about the spatial smoothness of the flow. Together these terms
define the energy function E(u) and estimating the optical flow amounts to finding a global mini-
mum u, possibly constrained by a set U of admissible flow fields, and using an appropriate numerical
method:

inf
u∈U

E(u) , E(u) := ED(u) + ER(u) (3.1)

E(u) is non-convex in general and hence only suboptimal solutions can be determined in practice.
Based on the variational approach published in 1981 by Horn & Schunck [68] a vast number of

refinements and extensions were proposed in literature. Recent comprehensive empirical evaluations
[47, 14] reveal that algorithms of this family yield best performance. Section 3.2 introduces the ap-
proach of Horn and Schunck as reference for the following discussion, after deriving the required
linearized invariance assumption in Sect. 3.1.

Data and regularization terms designed to cope with various difficulties in real applications are
presented in Sections 3.3 and 3.4, respectively. Section 3.6 gives a short overview over numerical al-
gorithms for solving problem (3.1). Section 3.5 addresses some important extensions of the discussed
framework.

3.1. Differential Constraint Equations, Aperture Problem. All variational optical flow approaches
impose an invariance assumption on some feature vector g(x, t) ∈ R

p, derived from an image se-
quence f(x, t) as discussed in Sect. 2.1. Under perfect conditions, any point moving along the trajec-
tory x(t) over time t with speed u(x, t) := d

dtx(t) does not change its appearance, i.e.

d

dt
g(x(t), t) = 0 . (3.2)

Without loss of generality, motion at t = 0 is considered only in what follows. Applying the chain
rule and dropping the argument t = 0 for clarity, leads to the linearized invariance constraint,

Jg(x)u(x) + ∂tg(x) = 0 . (3.3)

Validity of this approximation is limited to displacements of about 1 pixel for real data as elaborated
in Sect. 2.2.2, which seriously limits its applicability. However, Sect. 3.3.3 describes an approach to
alleviating this restriction and thus for now it is safe to assume that the assumption is fulfilled.

A least squares solution to (3.3) is given by (S(x))−1(J>g (x)(∂tg(x))) where

S(x) := J>g (x) Jg(x). (3.4)

However, in order to understand the actual information content of equation system (3.3), the locally
varying properties of the Jacobian matrix Jg(x) have to be examined:

rank(Jg) = 0: void constraints on u(x) (for g(x, 0) = const.);

rank(Jg) = 1: ill-conditioned constraints, a single component of u(x) is determined only;

p = rank(Jg) = 2: unique solution u(x) = − J−1
g (x)(∂tg(x));

p > rank(Jg) = 2: over-determined and possibly conflicting constraints on u(x), cf. Fig. 8.

In the case of gray-valued features g(x) = f(x) ∈ R, (3.3) is referred to as the linearized brightness



18 F. BECKER, S. PETRA, C. SCHNÖRR

(a) synthetic
scenarios

(b) real image data (c) local information content

FIGURE 8. Ellipse representation of S = J>g Jg as in (3.2) for a patch feature vector
with p � 2 (see Sect. 3.3.2). (a) Three synthetic examples with Jg having (top to
bottom) rank 0, 1 and 2, respectively. (b) Real image data with homogeneous (left)
and textured (right) region, image edges and corner (middle). (c) Locally varying
information content (see Sect. 3.1) of the path features extracted from (b).

constancy constraint and imposes only one scalar constraint on u(x) ∈ R
2, in the direction of the

image gradient Jg(x) = (∇g(x))> 6= 0, i.e.〈
∇g(x)

‖∇g(x)‖
, u(x)

〉
= − ∂tg(x)

‖∇g(x)‖
. (3.5)

This limitation which only allows to determine the normal flow component is referred to as the aper-
ture problem in the literature.

Furthermore, for real data, invariance assumptions do not hold exactly and compliance is measured
by the data term as discussed in Sect. 3.3. Section 3.4 addresses regularization terms which further
incorporate regularity priors on the flow so as to correct for data inaccuracies and local ambiguities
not resolved by (3.3).

3.2. The Approach of Horn & Schunck. The approach by Horn & Schunck [68] is described in the
following due to its importance in the literature, its simple formulation and the availability of well
understood numerical methods for efficiently computing a solution.

3.2.1. Model. Here the original approach [68], expressed using the variational formulation (3.1), is
slightly generalized from gray-valued features g(x) = f(x) ∈ R to arbitrary feature vectors g(x) ∈
R
p. Deviations from the constancy assumption in (3.3) are measured using a quadratic function ρD =
ρ2

2, leading to

ED(u) =
1

2

∫
Ω
ρD

(
‖Jg(x)u(x) + ∂tg(x)‖F

)
dx . (3.6)

As for regularization, the quadratic length of the flow gradients is penalized using ρR = ρ2
2, to enforce

smoothness of the vector field and to overcome ambiguities of the data term (e.g. aperture problem;
see Sect. 3.1):

ER(u) =
1

2σ2

∫
Ω
ρR(‖ Ju(x)‖F )dx . (3.7)

The only parameter σ > 0 weights the influence of regularization against the data term.
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3.2.2. Discretization. Finding a minimum of E(u) = ED(u) + ER(u) using numerical methods
requires discretization of variables and data in time and space. To this end, let {xi}i∈[n] define a
regular two-dimensional grid in Ω, and let g1(xi) and g2(xi) be the discretized versions of g(x, 0) and
g(x, 1) of the input image sequence, respectively. Motion variables u(xi) are defined on the same grid
and stacked into a vector u:

u(xi) =
(
u1(xi)

u2(xi)

)
, u =

(
(u1(xi))i∈[n]

(u2(xi))i∈[n]

)
∈ R2n. (3.8)

The appropriate filter for the discretization of the spatial image gradients ∂ig strongly depends on
the signal and noise properties as discussed in Sect. 2.2.3. A recent comparison [115] reports that a
5-point derivative filter ( 1

12{−1, 8, 0,−8, 1}) applied to 1
2(g1 +g2) performs best. Temporal gradients

are approximated as ∂tg(xi) ≈ g2(xi)− g1(xi).
As a result, the discretized objective function can be rewritten as

E(u) =
1

2
‖Du+ c‖2 +

1

2σ2
‖Lu‖2 , (3.9)

using the linear operators

D :=

(
D1,1 D1,2

...
...

Dp,1 Dp,2

)
, c :=

(
c1
...
cp

)
, L :=

( L1,1

L1,2

L2,1

L2,2

)
, (3.10)

with data derivatives cj := (∂tgj(x
i))i∈[n] and Dj,k := diag

(
(∂kgj(x

i))i∈[n]

)
. The matrix opera-

tor Ll,k applied to variable u approximates the spatial derivative ∂k of the flow component ul using
the 2-tap linear filter {−1,+1} and Neumann boundary conditions.

3.2.3. Solving. Objective function (3.9) is strictly convex in u under mild conditions [109] and thus
a global minimum of this problem can be determined by finding a solution to ∇uE(u) = 0. This
condition explicitly reads

(D>D + σ−2L>L)u = −D>c (3.11)

which is a linear equation system of size 2n in u ∈ R2n with a positive definite and sparse matrix. A
number of well-understood iterative methods exist to efficiently solve this class of problems even for
large n [104].

3.2.4. Examples. Figure 9 illustrates the method by Horn & Schunck for a small synthetic example.
The choice of parameter σ is a trade-off between smoothing out motion boundaries (see Fig. 9(b)) in
the true flow field (Fig. 9(a)) and sensitivity to noise (Fig. 9(d)).

3.2.5. Probabilistic Interpretation. Considering E(u) as a the log-likelihood function of a probabil-
ity density function gives rise to the maximum a-posteriori interpretation of the optimization prob-
lem (3.1), i.e.

sup
u∈U

p(u |g, σ ) , p(u |g, σ ) ∝ exp(−E(u)) . (3.12)

As E(u) is quadratic and positive definite due to the assumptions made in Sect. 3.2.3, this posterior is
a Gaussian multivariate distribution

p(u |g, σ ) = N (u;µ,Σ) (3.13)

with precision (inverse covariance) matrix Σ−1 = D>D+σ−2L>L and mean vector µ = −Σ−1D>c
that solves (3.11).
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(a) correct flow (b) estimated flow, σ2 = 102 (c) estimated flow, σ2 = 103 (d) estimated flow, σ2 = 104

FIGURE 9. (a) Synthetic flow field used to deform an image. (b)–(d) Flow field es-
timated by the approach by Horn & Schunck with decreasing strength of the smooth-
ness prior.

Examining the conditional distribution of ui ∈ R2 allows to quantify the sensitivity of u. To this

end a permutation matrix Q =

(
Qi
Qi

)
∈ R2n×2n, Q>Q = I , is defined such that ui = Qiu. Then,

fixing Qiu = Qiµ leads to

p
(
ui
∣∣Qiu) = N

(
µ̂i, Σ̂i

)
(3.14)

with µ̂i = Qiµ and
Σ̂i = QiΣQ

>
i − (QiΣQ

>
i )(QiΣQ

>
i

)−1(QiΣQ
>
i

) . (3.15)
Using the matrix inversion theorem to invert Σ block-wise according to Q and restricting the result
to ui, reveals

QiΣ
−1Qi =

(
QiΣQ

>
i − (QiΣQ

>
i )(QiΣQ

>
i

)−1(QiΣQ
>
i

)
)−1

. (3.16)

Comparison of (3.15) to (3.16) and further analysis yields (for non-boundary pixels)

Σ̂i =
(
QiΣ

−1Qi
)−1

=
(
Si + 4σ−2I

)−1
(3.17)

with Si = S(xi) as defined by (3.4). Consequently, smaller values of σ reduce the sensitivity of ui,
but some choice σ > 0 is inevitable for singular Si.

3.3. Data Terms.

3.3.1. Handling Violation of the Constancy Assumption. The data term as proposed by Horn & Schunck
was refined and extended in literature in several ways with the aim to cope with the challenging prop-
erties of image data of real applications, see Sect. 2.2.5.

Changes of the camera viewpoint as well as moving or transforming objects may cause previously
visible image features to disappear due to occlusion, or vice versa to emerge (dis-occlusion), leading
to discontinuous changes of the observed image features g(x(t), t) over time and thus to a violation
of the invariance constraint (3.2).

Surface reflection properties like specular reflections that vary as the viewpoint changes, and vary-
ing emission or illumination (including shadows) also cause appearance to change, in particular in
natural and outdoor scenes.

With some exceptions, most approaches do not to explicitly model these cases and instead replace
the quadratic distance function ρ2

2 by the convex `2-distance or its differentiable approximation ρ2,ε,
to reduce the impact of outliers in regions with strong deviation from the invariance assumption. A
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number of non-convex alternatives have been proposed in the literature, including the truncated square
distance ρ2,λ, which further extend this concept and are often referred to as “robust” approaches.

Another common method is to replace the constancy assumption on the image brightness by one
of the more complex feature mappings g(x, t) introduced in Sect. 2.1, or combinations of them. The
aim is to gain more descriptive features that overcome the ambiguities described in Sect. 3.1, e.g. by
including color or image structure information from a local neighborhood. Furthermore, robustness of
the data term can be increased by choosing features invariant to specific image transformations. For
example, g(x) = ∇f(x) is immune to additive illumination changes.

3.3.2. Patch Features. Contrary to the strongly localized brightness feature g(x) = f(x), local image
patches sampled from a neighborhood N (x) of x,

g(xi, t) =
(
f(xj , t)

)
xj∈N (xi)

∈ Rp, p = |N (xi)| (3.18)

provide much more reliable information on u in textured image regions. In fact, local approaches set
ER(u) = 0 and rely only the information contained in the data term.

The most prominent instance introduced by Lucas & Kanade [84], chooses a Gaussian weighted
quadratic distance function,

ρ2
wi(z) := ‖diag(wi)

1
2 z‖2 , wi := (w(xi − xj))xj∈N (xi) (3.19)

and w(x) := exp
(
−‖x‖2/(2σ2)

)
. Solving the variational problem (3.1) decomposes into n linear

systems of dimension 2 each. Furthermore, the sensitivity in terms of (3.17) reduces to Σ̂i = (Si)−1

and
Si =

∑
xj∈N (xi)

w(xi − xj)
(

J>g (xj) Jg(x
j)
)

(3.20)

equals the so-called structure tensor. At locations with numerically ill-conditioned Jg, cf. Fig. 8 and
the discussion in Sect. 3.1, no flow can be determined reliably which leads to possibly sparse results.
The works [111, 30] overcome this drawback by complementing this data term by a regularization
term.

3.3.3. Multiscale. As discussed in Sect. 2.2.3, the range of displacements u(x) that can be accurately
estimated, is limited to about 1 pixel which does not conform to the larger magnitude of motion fields
typically encountered in practical applications. Multiscale methods allow to remove this restriction to
some extent. They implement a coarse-to-fine strategy for approximately determining large displace-
ments on spatially band-limited image data and complementing flow details on finer scales.

The underlying idea is introduced by means of a multiscale representation {g[l]}l∈[nl] of image data,
where l = 0 and l = nl − 1 refer to the finest and coarsest scale, respectively. More precisely, g[l]

is a spatially band-limited version of g with ωx,max < slπ with 1 = s0 > s1 · · · snl−1 > 0. The
computation is described by the following recursive scheme with u[nl](x) = 0:

• g[l](x, t) := hl ∗ g(x+ t · u[l+1], t)

• δu[l] := arg minuE(u) on data g[l](x, t)

• u[l](x) := u[l+1](x) + δu[l](x)

with a suitable approximation of the ideal low-pass filter hl with frequency response

ĥl(ωx, ωt) ≈

{
1 ‖ωx‖∞ < slπ

0 otherwise
. (3.21)

Figure 10 demonstrates the method for two simple examples.
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FIGURE 10. Multiscale flow estimation: (a) An image (white noise) g[l](x, 0) rep-
resented at multiscale levels l = 0 (black), l = 3 (blue), l = 6 (red) with sl = 2−l,
i.e. band-limited to slπ. (b) Estimate u[l] (same color encoding as in (a)) of correct
constant flow u(x) = 23.3 on multiscale level l. (c)-(d) Same as (a)-(b) for a single
line of a real image ( c©LaVision GmbH) as found in particle image velocimetry, an optical
fluid flow estimation method.

Actual implementations further make use of the band-limited spectrum of the filtered data and sub-
sample the data according to the Nyquist-Shannon sampling theorem, leading to a data representation
referred to as resolution pyramid. The recursive structure allows in turn to approximate hl by chaining
filters with small support for computational efficiency.

3.4. Regularization. Ill-posed data terms, sensor noise and other distortions lead to sparse and lo-
cally inaccurate flow estimates. Variational approaches allow to incorporate priors on the motion
regularity by means of additional terms ER(u). For suitable models ED(u) and ER(u), accuracy
profits from this concept as the global solution to minimization problem (3.1) represents the best flow
field according to both observations and priors. Furthermore, in contrast to local methods, missing
flow information is approximately inferred according to the smoothness prior. This is in particular
essential in connection with ill-posed data terms (cf. Sect. 3.1).

3.4.1. Regularity Priors. A number of a-priori constraints u ∈ U for flow estimation have been
proposed in the literature, based on prior knowledge specific to the application domain. Examples
include

• inherent geometrical constraints induced by multi-camera setups (Sect. 3.5.2),
• physical properties of flows in experimental fluid mechanics (Sect. 3.5.3).
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(a) correct flow (b) estimated flow, σ2 = 102 (c) estimated flow, σ2 = 103 (d) estimated flow, σ2 = 104

FIGURE 11. (a) Synthetic flow field used to deform an image. (b)–(d) Flow field
estimated by the approach by Horn & Schunck, however with `1−TV -regularization,
with decreasing strength of the smoothness prior.

Formally, strict compliance with a constraint u ∈ U can be incorporated into the variational formula-
tion (3.1) by means of the corresponding indicator function

ER(u) = δU (u) . (3.22)

In many applications, however, the set U cannot be specified precisely. Then a common approach is
to replace δU by a smoother function measuring the distance of u to U in some sense,

ER(u) = ρ(u−ΠUu). (3.23)

For example, the regularization term of the Horn & Schunck approach presented in Sect. 3.2 may be
written as

ER(u) = ‖Lu‖2 = ‖u−Πker(L)(u)‖2L (3.24)
with semi-norm ‖x‖L := ‖Lx‖ and set U = ker(L). Generalizations of the approach of Horn &
Schunck are based on the same L and modify the distance function (Sect. 3.4.2) or refine them to
become locally adaptive and anisotropic (Sect. 3.4.3).

Further extensions replace the gradient operator in (3.7) and its discretization L by other opera-
tors having a larger space U = ker(L). For example, operators involving second order derivatives
∇ div and ∇ curl have been used for flow estimation in experimental fluid dynamics [141, 142, 143]
(cf. Sect. 3.5.3).

3.4.2. Distance Functions. Occlusion of objects do not only lead to sudden changes of the projected
appearance (cf. Sect. 3.3), but also to motion discontinuities whose preservation during flow estimation
is crucial in many applications and for the interpretation of videos. The penalization of large motion
gradients Ju can be reduced by replacing the quadratic distance function ρ2

2 in (3.7) by convex or
non-convex alternatives, see (2.3) for some examples.

Figure 11 demonstrates the effect of replacing the quadratic distance measure of the approach by
Horn & Schunck (Sect. 3.2) by ρR = ρ2. It becomes apparent that motion discontinuities can be better
resolved than with ρR = ρ2

2 (see Fig. 9).

3.4.3. Adaptive, Anisotropic and Non-local Regularization. A further option is to include a-priori
information on the location and alignment of motion discontinuities by using a spatially varying,
adaptive and possibly anisotropic norm in (3.7),

ER(u) = σ−2

∫
Ω
ρR(‖ Ju(x)‖W (x))dx , (3.25)
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with ‖A‖W := ‖AW‖F and (omitting the dependency on x)

W =
(
w1e

1 w2e
2
)
. (3.26)

The normalized orthogonal directions e1, e2 ∈ R2 point across and along the assumed motion bound-
ary, respectively. The positive eigenvalues w1 and w2 control relative penalization of flow changes in
the according direction.

A common assumption made in literature, e.g. [134, 129], is that image edges and flow disconti-
nuities coincide and to facilitate changes of u(x) across the assumed boundary e1. For general fea-
tures g(x), the notion of image edge is here defined by choosing e1 and e2 as the normalized direction e
of the largest and smallest change of ‖ Jg e‖, respectively, given by the eigenvectors of S = J>g Jg. The
associated eigenvalues λ1 ≥ λ2 ≥ 0 of S control the strength of smoothness by settingwi = 1−ρ(λi),
i = 1, 2 and suitable increasing ρ(x) ∈ [0, 1] with ρ(0) = 0. This defines an anisotropic and image-
driven regularization. Note that for the gray-valued case g(x) = f(x) ∈ R the formulation simplifies
to e1 = ‖∇g‖−1∇g, λ1 = ‖∇g‖2 and λ2 = 0. The class of flow-driven approaches replace the
dependency on g(x) of the terms above by the flow u(x) to be estimated. This nonlinear dependency
can be taken into account without compromising convexity of the overall variational approach [129].

While the approaches so far measure locally the regularity of flows u, approaches such as [79] adopt
non-local functionals for regularization developed in other contexts [76, 48, 44] for optical flow esti-
mation. Regularization is then more generally based on the similarity between all pairs (u(x), u(x′))
with x, x′ ∈ Ω, weighted by mutual position and feature distances.

3.5. Further Extensions. Three extensions of the basic variational approach are sketched: a natural
extension of spatial regularizers to the spatio-temporal domain (Sect. 3.5.1), regularization based on
the two-view geometry (cf. Sect. 2.3) and relative rigid motions for computer vision applications
(Sect. 3.5.2) and a case study of PDE-constrained variational optical flow estimation in connection
with imaging problems in experimental fluid dynamics (Sect. 3.5.3).

3.5.1. Spatio-Temporal Approach. The preceding discussion reduced the motion estimation problem
to determining displacements between two image frames only and thus ignored consistencies of the
flow over time. Although in many applications recording rates are fast compared to dynamical changes
due to modern sensors, only few approaches exploit this fact by introducing temporal smoothness
priors.

The work [130] proposed to process a batch of image frames simultaneously and to extend the flow
field domain along the time axis u : Ω × [0, T ] 7→ R

2. While data terms are independently imposed
for each time t, the smoothness prior is extended by a temporal component to

ER(u) :=

∫
Ω×[0,T ]

ρR(‖ Ju,t(x, t)‖W )dxdt . (3.27)

Here, Ju,t represents the spatio-temporal derivatives and ρR‖ · ‖W is a three-dimensional extension of
the anisotropic, flow-driven distance function discussed in Sect. 3.4.3. It allows to account for small
position changes of moving objects between consecutive frames within the support of the regulariza-
tion term (≤ 1 px) by supporting smoothness along an assumed trajectory.

Larger displacements, however, require matching of temporally associated regions e.g. using a mul-
tiscale framework (Sect. 3.3.3) but then enable to regularize smoothness of trajectories over multiple
frames as proposed in [126].

Online methods are an appealing alternative whenever processing a batch of image frames is not
feasible due to resource limitations. This approach is addressed in Sect. 5.3.
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(a) optical flow induced by camera motion
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FIGURE 12. (a) Relative motion Q ∈ SE(3) of the camera w.r.t. a world coordinate
system causes the projection x of a static scene point X = z(x)y to move from x to
x′ = x + u(x) in the image plane. (b) Any two projections x, x′ of a scene point X
are related by the essential matrix E as in (3.29), defining an epipolar plane and
their projection, the epipolar lines defined by {x, e} and {x′, e′} in the image plane
at t = 0 and t = 1, respectively.

3.5.2. Geometrical Prior Knowledge. In applications with a perspective camera as image sensor, the
geometrical scene structure strongly determines the observed optical flow (Sect. 2.3). This section
briefly addresses the most common assumptions made and the constraints that follow.

Often, a static scene assumption is made, meaning that all visible scene points have zero velocity
with respect to a world coordinate system. Then the observed motion is only induced by the camera
moving in the scene. Using the notation introduced in Sect. 2.3, the camera motion is denoted by Q ∈
SE(3) (cf. Fig. 12(a)), parametrized by rotation R ∈ SO(3) and translation h ∈ R3, so that any scene
point Y ∈ is transported to Y ′ ' Q−1Y .

The following discussion of common setups and their implications on the observed motion implic-
itly assumes that the scene point is visible in both frames. Using assumption (2.41) for the internal
camera parameters allows to work with normalized coordinates (2.32). The point corresponding to x
is denoted by x′, due to (2.42).

Static scene, general motion: Let the depth map z(x) : Ω 7→ R parametrize the scene point
X := z(x) ( x1 ) visible at x in the camera plane in the first frame. Then the projected corre-
spondences are given in homogeneous coordinates by

y′ ' PQ−1Y = R> (z(x) ( x1 )− h) , (3.28)

see Fig. 12(a) for an illustration. Figure 13 shows the optical flow field u(x) conforming to
constraint (3.28) for a real application.

It is possible to eliminate the dependency on z(x), that typically is unknown, by means of
the essential matrix E := R>[h]×, leading to the epipolar constraint

(y′)>Ey = 0 , (3.29)
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(a) frame from a real image se-
quence

(b) estimated flow u(x) and color code

fa
r

ne
ar

(c) estimated depth z(x)

FIGURE 13. (a) A single frame from an image sequence recorded by a camera mov-
ing forward through an approximately static scene. (b) Optical flow estimated using
the parametrization u(x) = u(x;Q, z(x)) according to (3.28) and global optimiza-
tion for Q ∈ SE(3), z ∈ Rn, see [18] for details. Displacement length and direction
are encoded by saturation and hue, respectively, see color code on the right. (c) Esti-
mated depth parameter z(x) using the color code on the right. Scene structure is more
evident in this representation and therefore the spatial smoothness prior on the flow
was formulated as regularization term on the depth z(x) instead of displace-
ments u(x).

as illustrated by Fig. 12(b). This gives rise to an orthogonal decomposition [112] of an ob-
served correspondence x̂′ into

x̂′ = x̂′e + x̂′⊥ (3.30)

with x̂′e fulfilling (3.29) and orthogonal deviations x̂′⊥.
Even without knowing a-priori (R, h), equation (3.29) provides a valuable prior: Valgaerts

et al. [121] propose joint computation of the fundamental matrix F related to E by (2.40) and
optical flow constrained via (3.29). They show that estimation of F is more stable and that
flow accuracy is significantly increased.

Static scene, coplanar camera motion: If the camera translates parallel to the image plane only,
i.e. R = I and h =

(
b
0

)
with b ∈ R

2, the observed flow is constrained to a locally varying
one-dimensional subspace parametrized by the inverse depth,

u(x) = z−1(x)b . (3.31)

Stereoscopic camera setups fulfill the static scene assumption as they can be interpreted as an
instantaneous camera motion with baseline ‖b‖. For details see e.g. [27].

Planar and static scene, general camera motion: In applications where the scene can be (lo-
cally) approximated by a plane such that 〈n,X〉 − d = 0 for all space points X with plane
parameters d, n as in (2.46), all correspondences fulfill

y′ ' Hy, H = R>
(
I − 1

d
hn>

)
, (3.32)

where H ∈ R3×3 defines a homography – cf. Eq. (2.49).

3.5.3. Physical Prior Knowledge. Imaging of dynamic phenomena in natural sciences encounters
often scenarios where physical prior knowledge applies. Examples include particle image velocime-
try [3] or Schlieren velocimetry [8], where the motion of fluids is observed that is governed by physical
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laws. While local methods such as cross-correlation methods are commonly used to evaluate the ob-
tained image sequences [135, 3], variational approaches [100, 101, 61] provide a more appropriate
mathematical framework for exploiting such prior knowledge and the estimation of physically consis-
tent optical flows.

For instance the Helmholtz decomposition of vector fields enables to define regularizers in terms
of higher-order partial flow derivatives in a natural way [141, 142, 143]. Constraints like incompress-
ibility can be enforced as hard or soft contraints using advanced methods of convex programming, to
cope with imaging imperfections. Conversely, flow field estimates obtained by other image processing
methods can be denoised so as to restore physically relevant structure [125].

A particularly appealing approach exploits directly some equation from fluid dynamics, that gov-
erns the flow as state of the physical system which is observed through an imaging sensor [102, 103].
The state is regarded as hidden and only observable through the data of an image sequence that depicts
the velocity of some tracer suspended in the fluid. The variational approach of fitting the time varying
state to given image sequence data results in a PDE-constrained optimization or distributed parameter
control problem, respectively.

As example the approach [102] is sketched based on the Stokes system

−µ∆u+∇p = fΩ in Ω, (3.33a)
div u = 0 in Ω, (3.33b)

u = f∂Ω on ∂Ω, (3.33c)

that for given fΩ, f∂Ω with
∫
∂Ω〈n, f∂Ω〉ds = 0 (n denotes the outer unit normal of the Lipschitz

domain Ω) has a unique solution u, p under classical assumptions [49, Ch. I]. Here fΩ, f∂Ω are not
regarded as given data but as control variables, to be determined so that the flow u not only satisfies
(3.33) but fits also given image sequence data. To achieve the latter, both the state variables u, p and
the control variables fΩ, f∂Ω are determined by minimizing in the two-dimensional case d = 2 the
objective

E(u, p, fΩ, f∂Ω) = ED(u) + α

∫
Ω
ρ2

2(fΩ)dx+ γ

∫
∂Ω
ρ2

2

(
〈n⊥,∇f∂Ω〉

)
ds, α, γ > 0. (3.34)

The first term ED(u) denotes a data term of the form (3.6), and the remaining two terms regularize
the control variables so as to make the problem well-posed.

For related mathematical issues (e.g. constraint qualification and existence of Lagrange multipli-
ers) see [53, Ch. 6] and [71, Ch. 1], and furthermore [54, 53] for related work outside the field of
mathematical imaging based on the general Navier-Stokes system.

3.6. Algorithms. The choice of an optimization method for numerically minimizing the functional
(3.1) depends on the specific formulation of the terms ED and ER involved. Suitable methods can be
broadly classified into

– algorithms for minimizing smooth convex functionals,
– algorithms for minimizing non-smooth convex functionals,
– algorithms for locally minimizing non-convex functionals.

In view of the typical multiscale implementation of the data term (Sect. 3.3.3) that enables a quadratic
approximation at each resolution level, this classification is applied to the regularizer ER only and
each class is discussed in turn in the sections to follow. The reader should note that convex non-
quadratic data terms, as discussed in Sect. 3.3.1, can be handled in a similar way as the convex non-
smooth regularizer below, and a number of closely related alternatives exist (e.g. [36]). Since convex
programming has been extensively studied in the literature, the following presentation is confined to
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representative case studies that illustrate in each case the underlying idea and application of a general
principle.

3.6.1. Smooth Convex Functionals. It is useful to distinguish quadratic and non-quadratic functionals.
The approach of Horn and Schunck (Sect. 3.2) is a basic representative of the former class. Solving
the corresponding linear positive definite sparse system can be efficiently done by established methods
[104]. More sophisticated implementations are based on numerical multigrid methods [26]. These are
optimal in the sense that runtime complexity O(n) linearly depends on the problem size n. Dedicated
implementations run nearly at video frame rate on current PCs.

For more general data-dependent quadratic regularizers and especially so for non-quadratic convex
regularizers (cf. Sect. 3.4.3 and [129]), multigrid implementation that achieve such runtimes require
some care. See [28, 29, 55] for details and to [119] for a general exposition.

3.6.2. Non-smooth convex functionals. This class of optimization problems has received consider-
able attention in connection with mathematical imaging, inverse problems, machine learning and in
other fields during the recent years, due to the importance of non-smooth convex sparsity enforcing
regularization. See [12] for a recent overview.

The total variation regularizer

ER(u) = TV(u) := sup
v∈D
−
∫

Ω
〈u,Div v〉dx,

D := {v ∈ C∞0 (Ω;Rd)d : ‖v(x)‖F ≤ 1, ∀x ∈ Ω},

Div v = (div v1, . . . ,div vd)>

(3.35)

is a basic representative of the class of non-smooth convex functionals and appropriate to expose a
general strategy of convex programming that is commonly applied: problem splitting into subproblems
for which the proximal mapping can be efficiently evaluated.

The simplest anisotropic discretization of (3.35) that is particularly convenient from the viewpoint
of convex programming, reads ∑

ij∈E(G)

∑
k∈[d]

|uk(xi)− uk(xj)|, (3.36)

where {xi}i∈[n] are the locations indexed vertices V = [n] of a grid graph G = (V,E) in Ω, and E =
E(G) are the corresponding edges connecting adjacent vertices resp. locations along the coordinate
axes. Defining the vector

z ∈ Rd×|E(G)|, zk,ij = uk(x
i)− uk(xj) (3.37)

leads to the reformulation of (3.36)
‖z‖1, Lu = z (3.38)

where the linear system collects all equations of (3.37). As a consequence, the overall discretized
problem reads

min
u,z

ED(u) + α‖z‖1 subject to Lu− z = 0, α > 0 (3.39)

to which the ADMM approach [25] can be applied, that entails a sequence of partial minimizations of
the augmented Lagrangian corresponding to (3.39),

Lλ(u, z, w) = ED(u) + α‖z‖1 + 〈w,Lu− z〉+
λ

2
‖Lu− z‖2. (3.40)
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Specifically, with some parameter value λ > 0 and multiplier vector w, the three-steps iteration

uk+1 = argmin
u

ED(u) + 〈wk, Lu〉+
λ

2
‖Lu− zk‖2, (3.41a)

zk+1 = argmin
z

α‖z‖1 − 〈wk, z〉+
λ

2
‖Luk+1 − z‖2, (3.41b)

wk+1 = wk + λ(Luk+1 − zk+1), (3.41c)

is iteratively applied for k = 0, 1, 2, . . . , with arbitrary initializations z0, q0, until a suitable termina-
tion criterion is met [25, Section 3.3.1].

Assuming a quadratic form or approximation of ED(u) at some resolution level (Sect. 3.3.3), sub-
problem (3.41a) amounts to solve a sparse positive definite linear system similar to the basic approach
of Horn & Schunck, to which a multigrid solver can be applied as discussed above. Subproblem
(3.41b) amounts to computing the proximal mapping for the `1-norm and hence to perform a simple
shrinkage operation. See [37, 93] for corresponding surveys.

3.6.3. Non-convex functionals. Similar to the preceding non-smooth convex case, approaches are of
interest that can be conducted by solving a sequence of simple subproblems efficiently. Clearly, con-
vergence to a local minimum can be only expected. In contrast to the simpler convex cases above, the
absence of parameters is preferable that would have to be set properly, to ensure convergence to some
local minimum for any initialization. For example, Lipschitz constants of gradients are rarely known
in practice, and setting corresponding parameters savely enough will unduly slow down convergence
even for smooth problems.

A general strategy will be outlined next and its application to the non-convex extension of the
regularizer (3.36), using the distance function (2.3f),∑

ij∈E(G)

ρ2,λ

(
u(xi)− u(xj)

)
. (3.42)

In order to illustrate graphically the non-convexity of this regularizer from the viewpoint of optimiza-
tion, consider three summands of the “fully” anisotropic version of (3.42),∑

ij∈E(G)

∑
k∈[d]

ρ2,λ

(
uk(x

i)− uk(xj)
)
. (3.43)

defined on edges that meet pairwise in a common vertex,

ρ2,λ

(
uk(x

i1)− uk(xi2)
)

+ ρ2,λ

(
uk(x

i2)− uk(xi3)
)

+ ρ2,λ

(
uk(x

i3)− uk(xi4)
)
. (3.44)

Setting for simplicity and w.l.o.g. uk(xi1) = uk(x
i4) = 0 to obtain a function of two variables uk(xi2),

uk(x
i3), results in the corresponding graph depicted by Fig. 14. It illustrates the presence of many

non-strict local minima and that the design of a convergent minimization algorithm is not immediate.
Next consider a single summand ρ2,λ(zi − zj) of (3.43) with two scalar variables denoted by zi

and zj for simplicity. This function can be decomposed into the difference of two proper, lower-
semicontinuous (lsc), convex functions g and h,

ρ2,λ(zi − zj) = τ(zi − zj)2 −
(
τ(zi − zj)2 − ρ2,λ(zi − zj)

)
=: g(zi, zj)− h(zi, zj), τ > 1.

(3.45)

Applying this decomposition to each term of (3.43) yields

g(u)− h(u) (3.46)
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with g(u) = τ‖Lu‖2 as in (3.9), and with h(u) equal to the sum of all edge terms of the form
h(uk(x

i), uk(x
j)), ij ∈ E, k ∈ [d], given by (3.45).

DC-programming (DC stands for Difference-of-Convex functions [69]) amounts to locally mini-
mize (3.46) by solving a sequence of convex problems, defined by the closed affine majorization of
the concave part −h,

uk+1 = argmin
u

g(u)−
(
h(uk) + 〈vk, u− uk〉

)
, vk ∈ ∂h(uk), (3.47)

where ∂h(uk) denotes the subdifferential of h at uk. This two-step iteration in terms of (uk, vk) con-
verges under mild conditions [67]. Smoothing the problem slightly by replacing the distance function
ρ2,λ by ρ2,λ,ε defined by (2.3g), and replacing accordingly h by hε, yields vk = ∇hε(uk) and hence
turns (3.47) into the sequence of problems

uk+1 = argmin
u

g(u)− 〈∇hε(uk), u− uk〉. (3.48)

Taking additionally into account the data term ED(u) and assuming it (or its approximation) has
quadratic form at some resolution level (Sect. 3.3.3), solving (3.48) amounts to a sequence of Horn &
Schunck type problems to which numerical multigrid can be applied, due to the simple form g(u) =
τ‖Lu‖2. Not any single parameter, e.g. for selecting the stepsize, has to be set in order to ensure
convergence, and available code for a variational method can be directly applied. The price to pay for
this convenience is a moderate convergence rate.

Figure 14 illustrates the beneficial effect of smoothing and robustness of the non-convex regularizer:
Only the components of points ( z2z3 ) that are close enough to the data z1 = uk(x

i1) = z4 = uk(x
i4) =

0, as specified by λ, are fitted to these data. For distant points with z2 ≈ z3, regularization enforces
z2 = z3 or does not affect them at all if |z2 − z3| is large.

Applying the scheme (3.48) to (3.42) instead of (3.43) is straightforward. This does not affect g(u)
but merely∇hε in (3.48), due to replacing the scalar variables in (3.45) by the corresponding vectors.
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FIGURE 14. TOP ROW, LEFT: Two different illustrations of the non-convex, non-
smooth objective (3.44). BOTTOM ROW, LEFT: The objective (3.44) smoothed by re-
placing the distance function ρ2,λ by ρ2,λ,ε with ε = 0.2, as defined by (2.3g). RIGHT

PANEL: Sequences of iterates generated by (3.48) for 30 random points (z2, z3)> (ini-
tial and final iterates are marked with red and yellow, respectively). The regularizer
enforces fitting of the components z2, z3 to the data z1 = z4 = 0 as well as z2 = z3.
It is robust in the sense that components that are too distant to either of these criteria,
are not affected accordingly.
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4. THE ASSIGNMENT APPROACH TO OPTICAL FLOW ESTIMATION

In this section approaches to determining the assignment field u(x, t) (2.4) are considered, that
establish the correspondence (2.2) of a given feature mapping g(x, t) in two given images.

The following sections conform to a classification of these approaches. Both the scope and the
application areas associated with each class of approaches overlap with the variational approach of
Sect. 3, but otherwise differ. The presentation focuses on the former aspects and the essential differ-
ences, whereas an in-depth discussion of the latter aspects is beyond the scope of this survey.

Section 4.1 discusses local approaches to the assignment problem whereas the remaining three
sections are devoted to global approaches. In Sect. 4.2 the correspondence problem is reformulated as
an labeling problem so that methods for solving the Maximum A Posteriori (MAP) problem with the
corresponding Markov Random Field (MRF) model can be applied. Assignment by variational image
registration is briefly considered in Sect. 4.3.

4.1. Local Approaches. Key feature of the class of assignment approaches is the restriction of the
set of feasible assignment fields u(x) to a finite set. This set is defined by restricting at each location
{xi}i∈[n] ∈ Ω the range of u(xi) ∈ U(xi) to a finite set U(xi).

Local approaches determine the optimal u(xi) independently, i.e. they solve for each i ∈ [n]

u(xi) ∈ argmin
u∈U(xi)

ρ
(
g(xi, t), g(xi + u, t+ δt)

)
. (4.1)

The usually small sets |U(xi)| allow exhaustive search to find an optimal solution. Thus, the general
distance function ρ(·, ·) is not required to be convex or differentiable and allows for more involved
formulations.

Since local methods do not make use of (non-local) spatial smoothness priors w.r.t. u, they require
– and, in fact, solely rely on – discriminative features, typically derived from local images patches
also used by local variational methods, see (3.18):

g(xi, t) =
(
f(xj , t)

)
xj∈N (xi)

∈ Rp, p = |N (xi)| (4.2)

with some neighborhood N (xi), e.g. a square region.
In the following some common choices for ρ are addressed. For brevity, the discussion omits

references to xi and some fixed u = u(xi) and puts g1 := g(xi, t1), g2 := g(xi + u, t2) with
t2 = t1 + δt.

Template-based matching methods compare a template g1 pixel-wise to a potential match g2 and
derives some similarity measure from it. Direct comparison of gray values,

ρ(g1, g2) = ρ(g1 − g2) (4.3)

is usually avoided in favor of distance functions which are invariant to brightness or geometric changes.
Two popular choices are:

• The normalized cross-correlation [114] derives patch features which are invariant to global
additive and multiplicative changes of g by defining

gk =
gk − µ(gk)

σ(gk)
, k = 1, 2 (4.4)

with mean µ(gk) and standard deviation σ(gk) of samples {gkj }j∈[p]. Then the distance func-
tion is defined as

ρNCC(g1, g2) = 1− 1

p
〈g1, g2〉 =

1

2p
ρ2

2(g1 − g2) (4.5)
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where the last equation follows from 〈gk, gk〉 = pσ2(gk) = p.
• The Census transform creates binary descriptors

gk =
(
ψR+(gkj −mk)

)
j∈[p]

∈ {0, 1}p, k = 1, 2 (4.6)

with mk := g(xi, tk), which approximate directional derivatives [56] and measures the Ham-
ming distance

ρCT(g1, g2) = ρ1

(
g1 − g2

)
= ‖g1 − g2‖1 . (4.7)

This transformation is in particular invariant to any strictly monotonically increasing transfor-
mation γ : R 7→ R uniformly applied to all components of g1 and g2.

Histogram-based methods relax the pixel-by-pixel comparison in (4.3) to achieve additional invari-
ance to geometric transformations.

Exemplarily, a method frequently used in medical images registration [124] and stereo disparity es-
timation [65] is detailed. It uses the concept of mutual information [38] to measure distances between
gray-value probability distributions p̂k(f ; gk), k = 1, 2, determined as kernel density estimates [94]
from the samples {gkj }j∈[p]. Their entropies are given by

H(p̂k; g
k) = −

∫
p̂k(f ; gk) log p̂k(f ; gk) df, k = 1, 2. (4.8)

The joint distribution p̂1,2(f1, f2; g1, g2) is defined accordingly with joint entropy

H(p̂1,2; g1, g2) = −
∫

p̂1,2(f1, f2; g1, g2) log p̂1,2(f1, f2; g1, g2) df1df2. (4.9)

Then the mutual information defines the distance function

ρMI(g
1, g2) = H(p̂1; g1) + H(p̂2; g2)−H(p̂1,2; g1, g2) (4.10)

which shows some robustness against rotation, scaling and illumination changes.
Complex approaches such as Scale-invariant feature transform (SIFT) [82] and Speeded Up Robust

Features (SURF) [17] combine several techniques including histogram of orientations and multiple
resolution to optimize robustness, reliability and speed.

4.2. Assignment by Displacement Labeling. Consider again sets U(xi) of assignment vectors as
discussed in Sect. 4.1. In constrast to local approaches presented in the previous section, this section
is devoted to methods that simultaneously select vectors u(xi) ∈ U(xi) for all locations xi, i ∈ [n],
based on optimization criteria that evaluate desired properties of assignment fields u. The feasible set
of u is denoted by U := ∪i∈V U(xi). It will be convenient to index locations {xi}i∈V ∈ Ω by vertices
i ∈ V = [n] of a graph G = (V,E).

As a consequence of the twofold discretization of both the underlying domain Ω ⊂ R
d and the

range of u(x), it makes sense to associate with each location xi an integer-valued variable

`i := `(xi) ∈ [mi], mi := |U(xi)|, (4.11)

whose value determines the assignment vector u(xi) ∈ U(xi). This separates the problem formulation
in terms of the labeling field ` := {`i}i∈V from the set of assignment vectors U that may vary, as is
further discussed below.

Analogous to objectives (3.1) of variational approaches, a functional as criterion for labelings `
defines an approach,

J(`;U) = JD(`) + JR(`)

=
∑
i∈V

ϕi(`i;U) +
∑
ij∈E

ϕij(`i, `j ;U), (4.12)
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together with an algorithm for determining an assignment field u in terms of a minimizing labeling
field `. For instance, in view of a data term like (3.6), a reasonable definition of the function ϕi(·;U)
of (4.12) is

ϕi(`i;U) = ρD

(∥∥Jg(x
i)u`i + ∂tg(xi)

∥∥
F

)
, u`i ∈ U(xi), `i ∈ [mi] (4.13)

where `i enumerates all possible assignment vectors u`i at xi. However, getting back to the differ-
ences to the differential approach addressed in Sect. 2.2.2, a major motivation of formulation (4.12)
is to disregard partial derivatives of the feature map involved in differential variational approaches
(Sect. 3.1), and hence to avoid the corresponding limitations discussed in Sections 2.2.3 and 3.3.3.
Rather, data terms JD are directly defined by setting up and evaluating locally possible assignments
u`i ∈ U(xi) that establish a correspondence between local features (2.2), extracted from the given
image pair, and by defining costs ϕi(`i;U) accordingly. Notice that no smoothness of ϕi is required
– any distance discussed in Sect. 4.1 may be employed as in (4.13). For a discussion of the distance
(4.10) in this connection, see [75].

The same remarks apply to the definition of JR in (4.12). A common choice in the literature
however is the discrete version of the non-convex regularizer (3.42)

ϕij(`i, `j ;U) = ρ2,λ(u`i − u`j ;U). (4.14)

The reader should notice that the non-convex regularizer (3.42) has been replaced by the combinato-
rial version (4.14). Likewise, the non-convex data term (3.6) has been replaced by the discrete-valued
term (4.13). More generally, the problem related to the variational approach to cope with the non-
convexity of the data term (Sect. 3.3.3) by means of a multiscale implementation (Sect. 3.3.3), and
with the non-convexity of the overall functional by computing a “good” local minimum (Sect. 3.6.3),
has been replaced by the combinatorial problem to determine an optimal assignment by minimizing
(4.12). This problem is known in the literature as Maximum A Posteriori (MAP) problem w.r.t. the
discrete probabilistic graphical model

pG(`;U) =
1

Z
exp

(
− J(`;U)

)
, Z =

∑
`

exp
(
− J(`;U)

)
, (4.15)

that is the problem to compute the mode argmax pG(`;U) of the Markov Random Field pG defined
on the undirected graph G. See [127, 77] for background and further details.

Many past and current research activities are devoted to this problem, across various fields of com-
puter science and applied mathematics. Approaches range from integer programming techniques to
various convex relaxations and combinations thereof. To get a glimpse of the viewpoint of polyhedral
combinatorics on the problem to minimize (4.12), consider a single summand ϕi(`i;U) and define the
vector

θi ∈ Rmi , θi`i := ϕi(`i;U), `i ∈ [mi], (4.16)

whose components specify the finite range of the function ϕi. Then the problem of determining `i
corresponding to the minimal value of ϕi(`i;U), can be rewritten as

min
µi∈∆mi

〈θi, µi〉, (4.17)

which is a linear program (LP). Clearly, for general data defining θi by (4.16), the vector µi minimiz-
ing (4.17) is a vertex of the simplex ∆mi corresponding to the indicator vector µi = (0, . . . , 0, 1, 0, . . . , 0)>

of the value `i. This reformulation can be applied in a straightforward way to the overall problem of
minimizing (4.12), resulting in the LP

min
µ∈MG

〈θ, µ〉, (4.18)
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FIGURE 15. TOP Frame of a sequence, taken with a fast moving camera from the
KITTI benchmark (Sect. 2.5). BOTTOM Optical flow estimate based on MAP infer-
ence. The disk on the right displays the color code of flow vectors. Each image patch
localized at xi where a sufficiently discriminative feature could be extracted, is asso-
ciated with a set U(xi) of possible assignment vectors u`i ∈ U(xi). The displayed
assignment field u := {u`i}i∈V is determined by a labeling field ` minimizing the
functional (4.12). The latter combinatorial task has been solved to global optimality
by an approach combining convex relaxation and integer programming [106]. Global
optimality enables model validation: any deficiencies of the assignment field esti-
mate are solely due to the model components, feature extraction and constraints, as
encoded by the MRF (4.15) through J(`;U).

defined over the so-called marginal polytopeMG. This polytope is the convex hull of feasible vectors
µ, as is the simplex ∆mi in (4.17) for the feasible vectors µi. The combinatorial complexity of
determining the integer-valued minimizer of (4.12) is reflected by the complexity of the marginal
polytope MG. This complexity is due to the interaction of variables `i, `j as defined by the edges
ij ∈ E of the underlying graph, besides the integer constraints `i ∈ [mi], ∀i ∈ [n].

Formulation (4.18) is the starting point for convex relaxations by optimizing over simpler poly-
topes, defined by a subset of inequalities that specify facets ofMG. The recent paper [73] reports a
comprehensive evaluation of a broad range of approaches to problem (4.18). Figure 15 illustrates an
application to optical flow estimation.

While research on inference methods for graphical models is supporting the design of new ap-
proaches to optical flow estimation, the need to restrict the range of u to a finite set U is a significant
restriction. As a consequence, approaches either exploit prior knowledge about u, so as to enable a
covering of the relevant range of u with high resolution through the set U with bounded size |U|, or
they solve problem (4.14) once more after refining U , based on a first estimate of u.

For instance, the work [52] exploits the probabilistic model (4.15) in order to estimate locally the
uncertainty of a first estimate u, which in turn is used to refine the set U so as to accommodate the
discretization to the local variability of u(x). The approach [90] first determines a coarse estimate of u
in a preprocessing stage by global phase-based correlation, followed by defining possible refinements
of u(x) in terms of U . The authors of [138] rely on a prior estimate of the fundamental matrix F
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(2.34) using standard methods, which enables to properly define U based on the epipolar constraint
(2.38).

In a way, while the former two approaches mimic range refinement of variational methods through
representing u at multiple scales (Sect. 3.3.3), the latter approach exploits geometrical prior knowledge
in a similar way to variational methods as discussed in Sect. 3.5.2. Future research during the next
decade will have to reveal more clearly the pros and cons of these related methods.

4.3. Variational Image Registration. The objective of image registration is to assign two images in
terms of a diffeomorphism u : Ω→ Ω of the underlying domain. A major motivation for this inherent
smoothness of u have been applications to computational anatomy [140], based on fundamental work
of Grenander, Dupuis, Trouvé, Miller, Younes and others – cf. [42, 19, 140, 139] and references
therein.

Another basic motivation for the methodology of image registration is the use of point features, so-
called “landmarks”, for establishing sparse assignments, that need to be interpolated in a subsequent
step to obtain a transform of the entire underlying domain. This is usually accomplished by kernel
functions that span a corresponding Hilbert space of smooth functions with bounded point-evaluation
functional [136, 31]. Interpolation with thin-plate splines is a well-known example, and extensions to
approximating deformations are straightforward. See [98, 88] for corresponding overviews in connec-
tion with medical imaging.

The Large Deformation Diffeomorphic Metric Matching (LDDMM) approach [19, 50, 139], that
emerged from the works cited above, has evolved over the years into a theoretical and computational
framework for diffeomorphic image registration. In particular, the application to the assignment of
point sets, in connection with kernel functions, leads to a canonical system of ODEs whose numerical
solution generates a diffeomorphic assignment along a geodesic path on the diffeomorphism group.
See [113] for recent references and an extension for better handling deformations at multiple scales.

The importance of this framework is due to the well-developed mathematical basis, and due to its
broad applicability in the fields of computational anatomy and medical imaging. The mathematical
relations to continuum and fluid mechanics and the corresponding relevancy to imaging problems
with physical prior knowledge (cf. Sect. 3.5.3) are intriguing as well. In the field of computer vi-
sion, deformable shape matching constitutes a natural class of applications, unlike the more common
optical flow fields in natural videos that typically exhibit discontinuities, caused depth changes and
independently moving objects.



OPTICAL FLOW 37

5. OPEN PROBLEMS AND PERSPECTIVES

5.1. Unifying Aspects: Assignment by Optimal Transport. The mathematical theory of optimal
transport [123, 5] provides a general formulation of the assignment problem that bears many relations
to the approaches discussed so far.

Consider again the set-up discussed in Sect. 4.2: at each location xi indexed by vertices i ∈ V =
[n], a vector u(xi) ∈ U(xi) from a set of candidates U(xi) has to be selected. Put U = ∪i∈[n]U(xi).
Denote by V ′ the index set of all locations {xi + u(xi)}u(xi)∈U(xi), ∀i ∈ V , that u may assign to the
locations indexed by V . Then this set-up is represented by the bipartite graph G = (V, V ′;E) with
edge set E = {ij ∈ V × V ′ : ∃u ∈ U , xi + u = xj}. The first term of the objective (4.12) specifies
edge weights ϕi(`i;U) for each edge corresponding to the assignment xi + u`i = xj , and minimizing
only the first term

∑
i∈V ϕi(`i;U) would independently select a unique vector u(xi) from each set

U(xi), i ∈ V , as solution to (4.17).
A classical way to remove this independency is to require the selection of non-incident assignments,

that is besides uniquely assigning a vector u ∈ U(xi) to xi, ∀i ∈ V , it is required that there is at most
one correspondence xi + u = xj , for all j ∈ V ′. This amounts to determining an optimal weighted
matching in the bipartite graph G = (V, V ′;E). Formally, collecting the edge weights ϕi(`i;U) by a
vector θ ∈ Rm, m =

∑
i∈V mi, with subvectors given by (4.16), the LP

min
µ∈R|E(G)|

〈θ, µ〉 subject to µ ≥ 0, BGµ ≤ 1|V ∪V ′|, BG ∈ {0, 1}|V ∪V
′|×|E|, (5.1)

has to be solved where BG is the incidence matrix of graph G. It is well known that the polyhedron
R
|E|
+ ∩ {µ : BGµ ≤ 1|V ∪V ′|} is integral [78], which implies a binary solution µ ∈ {0, 1}|E| to (5.1)

satisfying the required uniqueness condition. Note that this condition may be regarded as a weak
regularity condition enforcing a minimal degree of “smoothness” of the assignment field u.

The connection to optimal transport can be seen by reformulating problem (5.1). Put n′ = |V ′| and
let the matrix c ∈ Rn×n′ encode the costs of assigning (transporting) location xi to xj = xi + u, u ∈
U(xi). Then consider the problem

min
µ∈Rn×n′

〈c, µ〉 subject to µ ≥ 0, µ1n′ = 1n, µ
>
1n ≤ 1n′ , n ≤ n′, (5.2)

where the unknowns are deliberately denoted again by µ. The second constraint says that each node
i ∈ V (location xi) is uniquely assigned to some node j ∈ V ′ (location xj). The third constraint says
that at most one vertex i ∈ V is assigned to each j ∈ V ′. The last condition n′ ≥ n naturally holds in
practical applications. It is straightforward to show [107, Prop. 4.3] that the solution µ ∈ {0, 1}n×n′

to (5.2) is again integral.
In the case n = n′, problem (5.2) equals the linear assignment problem, which is a discrete version

of Monge-Kantorovich formulation of the optimal transport problem. The constraints of (5.2) then
define the Birkhoff polytope and the minimizer µ at some vertex of this feasible set is a permutation
matrix that uniquely maps V and V ′ onto each other. Matrices µ that are not vertices (extreme points)
of the polytope are doubly stochastic, hence rows µi,• ∈ ∆n, i ∈ [n] and columns µ•,j , j ∈ [n]
represent non-deterministic assignments of vertices i ∈ V and j ∈ V ′, respectively.

The general formulation [123] considers Polish probability spaces (X , µX ), (Y, µY) with Borel
probability measures µX ∈ P(X ), µY ∈ P(Y), and the set of coupling measures, again deliberately
denoted by µ, that have µX , µY as marginals,

M(µX , µY) =
{
µ ∈ P(X × Y) : µ(A× Y) = µX (A), µ(X ×B) = µY(B),

∀A ⊆ B(X ), ∀B ⊆ B(Y)
}
.

(5.3)
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Given a Borel cost function c : X × Y → R ∪ {+∞}, the problem analogous to (5.2) in the case
n = n′ reads

inf
µ∈M(µX ,µY )

∫
X×Y

c(x, y)dµ(x, y). (5.4)

A central question concerns conditions on c that imply existence of deterministic minimizers µ of
(5.4), that is existence of a measurable function T : X → Y such that for random variables (X,Y )
with law µ the relation Y = T (X) holds. The assignment T is called transportation map that “pushes
forward” the “mass” represented by µX onto µY , commonly denoted T#:

T#µX = µY with µY(B) = µX (T−1(B)), ∀B ∈ B(Y). (5.5)

Likewise, µ is concentrated on the graph of T , akin to the concentration of minimizers of (5.2) on a
set of binary matrices.

Due to its generality formulation (5.4) provides a single framework for addressing a range of prob-
lems, related to optical flow estimation by assignment. This particularly includes:

• The representation of both discrete and continuous settings as sketched above, and the appli-
cability to the assignment of arbitrary objects, as defined by the spaces X ,Y .
• The focus on the combinatorial nature of the assignment problem, on convex duality and

tightness or lack of thightness of the convex relaxation (5.4), together with a probabilistic
interpretation in the latter case.
• Conservation of mass reflects the invariance assumption underlying (2.2) and (2.6), respec-

tively.
• The differential, dynamic viewpoint: Let X = R

d and define the cost function

c(x, y) = ‖x− y‖2 (5.6)

and the Wasserstein space
(
P2(X ),W2

)
of Borel probability measures

P2(X ) :=
{
µX ∈ P(X ) :

∫
X
‖x− y‖2dµX (x) <∞, ∀y ∈ X

}
, (5.7)

equipped with the Wasserstein distance

W2(µX , µ
′
X ) :=

(∫
X×X

‖x− y‖2dµ(x, y)

)
, ∀µ solving (5.4), (5.8)

with µY replaced by µ′X in (5.4). Then the path (µX ,t) defined by

µX ,t =
(
(1− t)I + tT

)
#
µX (5.9)

and some optimal map T via (5.5), satisfies the continuity equation

d

dt
µt + div(vtµt) = 0 (5.10)

with velocity field vt : Rd → R
d given by vt = (T − I) ◦ ((1 − t)I + tT )−1, ∀t in the sense

of distributions. Eqn. (5.10) provides a natural connection to continuum and fluid mechanics
(cf. e.g. [22]) and also to flows generating diffeomorphic assignments under additional as-
sumptions [139, Ch. 11]. Comparing (5.10) and (3.3) shows that, if g is regarded as a density
for the scalar case p = 1, condition (3.2) is a strong assumption implying div u = 0.

The generality of this framework explains too, however, why the regularity of solutions to the Monge-
Kantorovich problem is a subtle issue, even when given as deterministic assignment T . This is also
apparent through Euler’s equation (5.10), which lacks any viscous term that would induce some regu-
larity.
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From this viewpoint, much of the research related to variational optical flow estimation, and to the
related problems discussed in Sect. 4, can be understood as

(i) interplay between modelling additional terms that induce a desired degree of spatial regularity,
and

(ii) investigation of how this affects relaxation of the assignment problem from the optimization
point of view, and the accuracy of its solution.

As a consequence, no sharp boundaries can (and should) be defined that separate these subfields of
research. For instance,

– the paper [21] suggested an early heuristic attempt to combine bipartite graph matching and
thin-plate spline based registration.

– The work [51] combines smoothing with radial basis functions and MRF-based labeling
(Sect. 4.2) for medical image registration.

– More generally, concerning image labeling, modelling spatial context by the edge-indexed
terms ϕij of the objective (4.12) entails the need to relax combinatorially complex polyhe-
dral feasible sets like the marginal polytope in (4.18), whose vertices may not correspond to
deterministic assignments, unlike assignments as solutions in the simpler case (5.1).

– The authors of [7] introduce a smoothing operator to solve numerically the Monge-Kantorovich
problem.

– In [137] a related objective from continuum mechanics is proposed that, for a limiting value
of some parameter, models a viscous fluid, hence ensures spatial regularity in a physically
plausible way, as opposed to the pure continuity equation (5.10) that is lacking any such term.
Assignments are computed by numerically tracing corresponding geodesic paths.

– Much more general objectives for assignments are addressed in [87] that take explicitly into
account the metric structure of the underlying spaceX . The problem to “linearize” this combi-
natorially complex objective in terms of the Monge-Kantorovich problem is studied in [107],
along with the problem to define a cost function c so as to preserve the discriminative power
of the original objective as much as possible.

– The recent work [108] exploits the Wasserstein distance (5.8) so as to solve simultaneously
template-based assignment and image segmentation, by globally minimizing a corresponding
joint variational objective.

This sample of the literature suggests to conclude that in the field of variational image registration
(e.g. [139, 137]), sophisticated variational approaches exist that are satisfying in both respects (i),(ii)
discussed above: These approaches clearly exhibit their properties mathematically, and they induce
regularity without compromising accuracy of assignments, due to a good agreement with the physical
properties of the objects being matched.

Outside these fields, a similar quality only holds for variational approaches to optical flow estima-
tion that are constrained by – again: physically motivated – state equations (Sect. 3.5.3). A similar
level of rigour has not been reached yet in a major application area of optical flow estimation: motion
based analysis of videos of unrestricted scenes with uncontrolled viewpoint changes, and with inde-
pendently moving rigid and articulated objects. This deficiency of related models is aggravated by
the need for natural extensions of frame-to-frame assignments to the permanent analysis of dynamic
scenarios over time (cf. Sect. 5.3).

5.2. Motion Segmentation, Compressive Sensing. Research on compressive sensing [33, 40] and
corresponding applications have been pervading all fields of empirical data analysis, including image
reconstruction and more recently video analysis. A central theme are provable guarantees of signal
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recovery in polynomial runtime using sub-Nyquist sampling rates and convex relaxations of combina-
torial objective functions for signal reconstruction. For instance, the most common scenario concerns
the recovery of u ∈ Rn from m� n linear measurements Au = b ∈ Rm, by minimizing

min
u
‖u‖1 subject to Au = b, (5.11)

under the assumption that u is k-sparse, i.e.

‖u‖0 := | supp(u)| =
∣∣{i ∈ [n] : ui 6= 0}

∣∣ ≤ k. (5.12)

The objective in (5.11) constitutes a convex relaxation of the combinatorial objective ‖u‖0 and suitable
conditions on A, e.g. A is close to an isometry on the subset of 2k-sparse vectors, guarantees unique
recovery of u with high probability.

This section presents next an extension of this basic reconstruction principle to video analysis by
sketching the recent work reported by [58]. Let

ft ∈ Rn, t ∈ [T ], (5.13)

denote the raw image sequence data in terms of vectorized image frames ft, t = 1, 2, . . . , T . As-
suming a stationary camera as in surveillance applications, the objective is to separate the static back-
ground from objects moving in the foreground. The ansatz is based on the following modelling as-
sumptions:

• At each point of time t ∈ T , image data are only sampled on a subset Ωt ⊂ Ω of the discretized
domain Ω, resulting in subvectors

fΩt , t ∈ [T ]. (5.14)

The sample set Ωt may vary with t.
• The variation of components of fΩt corresponding to the static background is caused by global

smooth illumination changes. Hence, this part of fΩt can be represented by a low-dimensional
subspace

UΩtvt, UΩt ∈ R|Ωt|×nU , t ∈ [T ], (5.15)
generated by nU orthonormal colums of a matrix Ut that are subsampled on Ωt, and some
coefficient vector vt. Research in computer vision [20, 16] supports this subspace assumption.
• Objects moving in the foreground cover only small regions within Ω. Hence they can be

represented by vectors

sΩt with | supp(s)| � n. (5.16)

Putting all together the model reads

fΩt = UΩtvt + sΩt , t ∈ [T ], (5.17)

and convex relaxation of minimizing | supp(s)| due to (5.16) leads to the recovery approach

min
U,vt,sΩt

‖sΩt‖1 subject to UΩtvt + sΩt = fΩt . (5.18)

Comparison to (5.11) shows similar usage of the sparsity-inducing `1 norm and subsampled measure-
ments (5.14) as input data. On the other hand, the low-dimensional representation (5.15) of the static
part of the video is estimated as well, and the entire video is recovered in terms of Ut (hence U rather
than UΩt is optimized in (5.18)). In fact, this joint optimization problem is non-convex and handled in
[58] by alternating optimization:

– For fixed Ut, problem (5.18) is solved by applying ADMM (cf. Sect. 3.6.2) to the augmented
Lagrangian Lλ(U, vt, sΩt , wΩt) with multiplier vector wΩt and parameter λ as in (3.40).
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– Having determined vt, sΩt , wΩt , the subspace Ut is tracked by performing gradient descent
with respect to L(·, vt, sΩt , wΩt) on the Grassmannian G(nU ,R

n) (cf., e.g. [1]), resulting in
Ut+1.

The closely related static viewpoint on the same problem reveals its relevancy to several important
research directions. Let

F = [f1, . . . , fT ] = L+ S (5.19)
denote the whole video data that, due to the reasoning above, are supposed to be decomposable into a
low-rank matrix L and a sparse matrix S. The corresponding convex relaxation approach [34] reads

min
L,S
‖L‖∗ + α‖S‖1 subject to L+ S = F, (5.20)

where ‖L‖∗ =
∑

i σi(L) denotes the nuclear norm in terms of the singular values of L and ‖S‖1 =∑
i,j |Sij |. Here, the nuclear norm ‖ · ‖∗ constitutes a convex relaxation of the combinatorial task to

minimize the rank of L, analogous to replacing the combinatorial objective ‖u‖0 in (5.12) by ‖u‖1 in
(5.11). Clearly, the online ansatz (5.17) along with the corresponding incremental estimation approach
is more natural for processing long videos. The price to pay is the need to cope with a non-convex
(albeit smooth) problem, whereas the batch approach (5.20) is convex.

Future research will tackle the challenging, more general case of non-static backgrounds and mov-
ing cameras, respectively. For scenarios with small displacements u(x), work that represents the state
of the art is reported in [11]. Results in computer vision that support subspace models and low-rank
assumptions have been established [70], and the problem of clustering data lying in unknown low-
dimensional subspaces has received considerable attention [80, 4, 43]

From a broader perspective, video analysis and motion-based segmentation provides attractive con-
nections to research devoted to union-of-subspaces models of empirical data and relevant compressive
sensing principles [83, 35, 96], and to advanced probabilistic models and methods for nonparametric
inference [120, 66].

5.3. Probabilistic Modelling and Online Estimation. There is a need for advanced probabilistic
models and three related aspects of increasing difficulty are briefly addressed:

• A persistent issue of most variational models of mathematical imaging, including those for
optical flow estimation, concerns the selection of appropriate hyperparameter values, like
the parameter σ of (3.7) weighting the combination of data term and regularizer (3.1). In
principle, Bayesian hierarchical modelling [39] provides the proper framework for calibrating
variational models in this respect. The paper [59] illustrates an application in connection with
optical flow estimation, based on the marginal data likelihood [85] interpreted as hyperparam-
eter (model) evidence.

Estimating hyperparameter values from given data in this way entails the evaluation of
high-dimensional integrals for marginalization, commonly done using Laplace’s method and
a corresponding approximation by Gaussian (quadratic) integrals [117, 74]. A validation for
complex high-dimensional posterior distributions encountered in variational imaging is in-
volved, however, and is also stimulating more recent research in the field of statistics [99].

Using discrete variational models (Sect. 4.2) aggravates this problem, due to considerable
computational costs and since no widely accepted methods have been established analogous
to the above-mentioned approximations.
• Computational costs in connection with runtime requirements become a serious problem when

dynamic scenarios are considered. While extensions of the domain to Ω× [0, T ] like in (3.27)
are straightforward mathematically and have proven to significantly increase accuracy of op-
tical flow estimation, employing a static model in terms of elliptic Euler-Lagrange systems to
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a dynamic system appears somewhat odd, not to mention the need to shift the time interval
[0, T ] along the time axis in order to analyze long image sequences.

Such extensions appear more natural in connection with dynamic physical models con-
straining optical flow estimation, as opposed to stationary formulations like (3.33). See [9]
for a corresponding approach to data assimilation [116]. A nice feature of this method is the
ability to estimate initial conditions that are generally unknown, too. On the other hand, the
computational costs necessitate to propagate a low-dimensional POD-projection of the state
variables (POD: proper orthogonal decomposition) since the control of dynamical systems
[53] entails looping forward and backward through the entire time interval.
• The last remark points to the need for online estimation methods that are causal and optimal,

in connection with the analysis of dynamical system through image analysis. Again the proper
framework is known since decades: Given stochastic state and observation processes

S = {St}t≥0, G = {Gt}t≥0, (5.21)

stochastic filtering [13] amounts to determine the conditional distribution of St given the ob-
servation history and to evaluate it in terms of expectations of the form E[ϕ(St)|gs, 0 ≤ s ≤
t], for some statistic ϕ(·) of interest (e.g. simply ϕ(St) = St) and conditioned on realizations
gs of Gs, s ∈ [0, t]. Most research during the last decade considered the design of particle fil-
ters [41, 13] to the estimation of low-dimensional states based on image measurements. This
does not scale-up however to high-dimensional states like optical flows St = ut.

An attempt to mimic online estimation in connection with instationary optical flows re-
lated to experimental fluid dynamics is presented in [103], with states and their evolution
given by vorticity transport. For low signal-to-noise ratios and sufficiently high frame rates,
the approach performs remarkably well. Another dynamical computer vision scenario is dis-
cussed in the recent work [18]. Here the states St = (zt, {ht, Rt}) ∈ Rn × SE(3) are dense
depth-maps zt (cf. (3.28)) together with varying motion parameters {ht, Rt} describing the
observer’s motion relative to the scene, to be estimated from image sequence features gt as
measurements via optical flow estimates ut – see Fig. 13. The approach involves predic-
tion and fusion steps based on Gaussian approximation and joint optimization, yet cannot be
considered as direct application of the stochastic filtering framework, in a strict sense. This
assessment applies also to labeling approaches (Sect. 4.2) and their application to dynamic
scenarios.

6. CONCLUSION

Optical flow estimates form an essential basis for low-level and high-level image sequence analy-
sis and thus are relevant to a wide range of applications. Corresponding key problems, concepts and
their relationships were presented, along with numerous references to the literature for further study.
Despite three decades of research, however, an overall coherent framework that enables to mathemati-
cally model, predict and estimate the performance of corresponding computational systems in general
scenarios, is still lacking. This short survey will hopefully stimulate corresponding methodological
research.
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APPENDIX A. BASIC NOTATION

Table 1: List of major symbols used in the text.

Symbol Brief Description Reference
r.h.s. abbr.: right-hand side (of some equation)
w.r.t. abbr.: with respect to
w.l.o.g. without loss of generality
LP linear program
1n ∈ Rn (1, 1, . . . , 1)>

[n], n ∈ N integer range {1, 2, . . . , n}
[n]0, n ∈ N integer range {0, 1, . . . , n− 1}
Ω ⊂ R

d image domain; typically d ∈ {2, 3}
x =

(
x1, . . . , xd

)> ∈ Ω image point
u(x, t) ∈ Rd assignment, motion or optical flow field (2.4), (2.7), (2.8)

Sections 2.3.2, 2.3.3
X = (X1, X2, X3)> ∈ R3 scene point
y ∈ P2, Y ∈ P3 homogeneous representation of Section 2.3.1

image and scene points x and X , resp.
SO(3), so(3) special orthog. group and its Lie algebra
SE(3) group of Euclidean (rigid) transf. of R3

{h,R} ∈ SE(3) Euclidean transformation of R3 (2.28)
[q]× ∈ so(3), q ∈ R3 skew-symm. matrix defined by

[q]×X = q ×X, ∀X ∈ R3

K ∈ R3×3 camera matrix (internal parameters) Section 2.3.1
F,E ∈ R3×3 fundamental and essential matrix Section 2.3.1
f(x, t), x ∈ Ω, t ∈ R image sequence
∂i = ∂

∂xi
, i ∈ [d] spatial partial derivative

∂t = ∂
∂t temporal partial derivative

∂α = ∂|α|

∂
α1
1 ···∂

αd
d

multi-index notation

α ∈ Nd, |α| =
∑

i∈[d] αi
ωα = ωα1

1 · · ·ω
αd
d monomial from ω ∈ Rd

∇f(x, t) =

(
∂1f(x,t)

...

∂df(x,t)

)
spatial gradient

∇tf(x, t) =
(
∇f(x,t)
∂tf(x,t)

)
spatio-temporal gradient

div u divergence
∑

i∈[d] ∂iui of a vector field u
∆ Laplace operator

∑
i∈[d] ∂

2
i

g(x, t) ∈ Rp, p ≥ 1 feature mapping (specific meaning
and p depend on the context)

Jg(x) =
((
∇gi(x)

)
j

)
i∈[p],j∈[d]

Jacobian matrix of g(x) ∈ Rp at x ∈ Rd

Jg,t(x, t) =
((
∇tgi(x, t)

)
j

)
i∈[p]

j∈[d]∪{t}
Jacobian of g(x, t) ∈ Rp at (x, t) ∈ Rd+1

ĝ(ω) = Fg(ω) =
(
Fg)

(
ω) Fourier transform of g page 8, (2.17)

Continued on next page
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Table 1 – continued from previous page
Symbol Brief Description Reference

〈x, x′〉 =
∑

i xix
′
i Euclidean inner product

‖x‖ = 〈x, x〉1/2 Euclidean `2 norm
‖x‖1 =

∑
i |xi| `1 norm

diag(x) diagonal matrix with vector x as diagonal
kerA nullspace of the linear mapping A
trA =

∑
iAi,i trace of matrix A

〈A,B〉 = tr(A>B) matrix inner product
‖A‖F = 〈A,A〉1/2 Frobenius norm
ρ : R→ R+ distance function page 6, (2.3)

δC(x) =

{
0, x ∈ C
+∞, x 6∈ C

indicator function of a

closed convex set C ⊆ R
d

ΠC orthogonal projection onto
a closed convex set C

∆n ⊂ R
n probability simplex page 34, (4.16)

{x ∈ Rn :
∑

i∈[n] xi = 1; x ≥ 0}



OPTICAL FLOW 45

APPENDIX B. CROSS-REFERENCES

• Compressive Sensing
• Duality and Convex Programming
• Energy Minimization Methods
• Graph Cuts
• Iterative Solution Methods
• Large-Scale Inverse Problems in Imaging
• Linear Inverse Problems
• Registration
• Regularization Methods for Ill-Posed Problems
• Splines and Multiresolution Analysis
• Statistical Methods in Imaging
• Total Variation in Imaging
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