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Abstract. We analyze representative ill-posed scenarios of tomographic PIV with a fo-
cus on conditions for unique volume reconstruction. Based on sparse random seedings of
a region of interest with small particles, the corresponding systems of linear projection
equations are probabilistically analyzed in order to determine (i) the ability of unique re-
construction in terms of the imaging geometry and a single critical sparsity parameter,
and (ii) sharpness of the transition to non-unique reconstruction with ghost particles when
choosing the sparsity parameter improperly. The sparsity parameter directly relates to the
seeding density used for PIV in experimental fluids dynamics that is chosen empirically
to date. Our results provide a basic mathematical characterization of the PIV volume re-
construction problem that is an essential prerequisite for any algorithm used to actually
compute the reconstruction. Accordingly, we also comment on the role of various recon-
struction algorithms currently used in PIV from the optimization point of view. Finally,
we outline connections to major developments in other disciplines (compressed sensing)
and indicate how the imaging set-up may be further improved. The present paper is a
(very) short version of the forthcoming manuscript [8].

1 Introduction

We study the discrete tomography problem in Experimental Fluid Dynamics Tomographic Particle
Image Velocimetry (TomoPIV) [1], which received most attention among the different 3D techniques
available for measuring velocities of fluids, due to its increased seeding density with respect to other
3D PIV methods. TomoPIV is based on a multiple camera-system, three-dimensional volume illumi-
nation and subsequent 3D reconstruction, and employs only few projections due to both limited optical
access to wind and water tunnels and cost and complexity of the necessary measurement apparatus. As
a consequence, the reconstruction problem becomes severely ill-posed. Ill-posedness is also intimately
connected to the particle density, which is a crucial parameter for 3D fluid flow estimation from im-
age measurements. Higher densities ease subsequent flow estimation and increase the resolution and
measurement accuracy. On the other side, higher densities also aggravate ill-posedness of the recon-
struction problem. A theoretical investigation of this trade-off was lacking so far and is studied in our
present work [8]. Below, we merely point out informally few essential points and refer for technical
details and a more serious discussion to [8].

a e-mail: petra@math.uni-heidelberg.de
b e-mail: schnoerr@math.uni-heidelberg.de
c e-mail: andreas.schroeder@dlr.de



Forum on recent developments in Volume Reconstruction techniques applied to 3D fluid and solid mechanics

2 Reconstruction

The reconstruction of the 3D image from 2D images employs a standard algebraic reconstruction
algorithm: First the problem is discretized, which leads to a linear underdetermined system of equa-
tions. Then to cope with ill-posedness, the problem is regularized in terms of a suitable optimization
criterium, to select a solution with specific characteristics. Based on the optimization problem a nu-
merical scheme is developed to compute a solution. The classical method from [1] adds to the linear
projection equations a positivity constraint and removes ambiguity by entropy maximization. The lin-
ear constraints are not relaxed. Thus noisy measurements are not taken into account. The algorithmic
scheme is the classical MART iteration.

Discretization We consider an alternative to the classical voxel discretization [4] based on the
assumption that the image I to be reconstructed can be approximated by a linear combination of
Gaussian-type basis functions B j, j = 1, . . . , n, located at a 3D grid within the volume of interest. The
i-th measurement obeys

bi :≈
∫

Li

I(z)dz ≈
n∑

j=1

∫
Li

x jB j(z)dz =

n∑
j=1

x j

∫
Li

B j(z)dz =

n∑
j=1

x jai j ,

where ai j is the value of the i-th pixel if the object to be reconstructed is the j-th basis function. The
main task is to estimate the weights x j corresponding to basis functions from the recorded 2D images,
that contain the measurements bi, and to determine a solution x to Ax ≈ b.

The matrix A has dimensions (# pixel =: m) × (# basis functions = n). Since each row indicates
those basis functions whose support intersect with the corresponding projection ray, the projection ma-
trix A will be sparse. This property is crucial for examining the limits of the TomoPIV reconstruction
problem mathematically.

In the case of a regular grid along with identical basis functions and a parallel ray geometry, see
Fig. 1 for an example, the projection matrix can be obtained by a binary geometry matrix, with entry
1 if ray i intersects (neighborhood of) gridpoint j, and 0 otherwise, multiplied by a square and regular
band matrix induced by the chosen basis. Without loss of generality, we can further consider just the
binary matrix, since the basis matrix does not affect the reconstruction properties of A that is mainly
determined by its nullspace.

Regularization The reconstruction of particle volume functions from few projections can be mod-
eled as finding the sparsest solution of the (approximated) underdetermined linear system Ax ≈ b,
since the original particle distribution can be well approximated just by a very small number of active
basis functions relative to the number of all possible particle positions in the 3D domain. In general the
search for the sparsest solution is intractable (NP-hard), however. Yet, the theory of Compressed Sens-
ing [2,3] shows that one can compute via `1-minimization the sparsest solution for underdetermined
systems of equations provided the sensing matrix A satisfies certain conditions that define mathemati-
cally ideal sensors. Unfortunately, as shown in [7], all currently available recovery conditions predict
an extremely poor performance of the TomoPIV coefficient matrix from this viewpoint, see Fig. 1 and
the caption.

3 Sparsity and Improved Reconstruction

In [7] it was shown that if the solution of A is known to be sufficiently sparse and positive it is also the
unique positive solution. If A has only nonnegative entries, zero or negligible measurements can be
eliminated along with the corresponding incident basis functions. This leads to an ”equivalent” feasible
set of reduced dimensionality. This procedure is related to multiplicative line-of-sight estimation to fix
possible particle positions from [6]. It can be shown that a binary matrix recovers all k-sparse binary
vectors if and only if all these reduced systems are overdetermined full-rank systems.

The maximal such k is related to the minimal number of negative (or positive) entries in the sparsest
nullspace of A. We estimated the critical k such that for most arbitrary k-sparse vectors the reduced
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Fig. 1. Left Sketch of a 3-cameras setup in 2D. The corresponding 0/1 sensing matrix A marks in each row
corresponding to a projection ray all incident discretization cells by the entry 1, equal to the length of the inter-
section of the ray with each discretization cell. Matrix A ∈ {0, 1}m×n is underdetermined, with m = 3(2N + 1)
and n = 3N2 + 3N + 1, where N + 1 is the number of cells on each hexagon edge. This geometry can be easily
extended to 3D by enhancing both cameras and volume by one dimension, thus representing scenarios of practical
relevance as in [5], where a free jet inside an illuminated cylinder was imaged by cameras aligned on a line. Our
numerical results cover the range up to N = 1500, corresponding to about 6.75 × 106 cells. Right Our average
case analysis of correct reconstruction revealed that TomoPIV matrices perform approximately ten times worse
than the mathematically ideal Gaussian ensemble [3], indicated by the dark gray area and light gray bars in the
right panel, respectively. The minimal feasible sparsity k (maximal feasible particle density) for a 3-camera sys-
tem, represented by the black bar, was analytically computed in [7] and depends on the problem size as eqn. (1)
predicts.

systems are indeed overdetermined and obtained the relation

k(N) ≈ 4N0.342+0.011 log(N) (1)

depending on the problem size N. Additionally, we proved a tail bound entailing that for increasing
large problem sizes N → ∞, the critical k acts like a threshold that sharply discriminates successful
reconstruction from failure. Figure 2 illustrates this fact as well as results for sensing matrices that
have been improved in a specific way – see [8].

Fig. 2. Left Average undersampling ratio for the reduced systems of equations with the curve from (1). Middle
The empirical success-failure phase transition for the binary matrix corresponding to the geometry from Fig.
1 Right Empirical success-failure phase transition for the improved measurement system along with the phase
transition from (1). The results indicate that at least a 150% times better reconstruction performance may be
obtained in practice within the considered range of image resolution.
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4 Algorithms

In the noiseless case, positivity constraints are sufficient to regularize the reconstruction problem.
Therefore one can employ any objective function in order to reconstruct a sparse enough and positive
solution. In particular, the non-smooth `1-regularizer may be replaced by a smooth convex functional,
enabling more efficient numerical algorithms. This perspective has not been exploited so far.

On the other hand, when data are noisy as is the case in practice, a suitable distance D(·, ·) of Ax
to the measurement vector b is tolerated, and we solve the problem

min
x

D(Ax, b) subject to x ≥ 0 . (2)

The current state of the art reconstruction algorithm for TomoPIV in the literature, Simultaneous
Multiplicative Algebraic Reconstruction Technique (SMART), minimizes the Kullback-Leibler cross
entropy KL(Ax, y) over the nonnegative orthant.

One can also consider nonnegative least squares as done in [9], where the proposed methods out-
perform SMART in terms of speed.

5 Conclusion

TomoPIV sensing matrices have an extremely poor worst case performance from the viewpoint of
compressed sensing, as compared to mathematically ideal sensors. Based on a probabilistical average
case analysis, however, we showed an expected performance of the TomoPIV measurement system
equal to the low particle densities used by engineers in practice. Furthermore, simulations demonstrate
that specific slight random perturbations of the TomoPIV measurement matrix considerably boost the
expected reconstruction performance by about 150%. Additionally, sparsity enforcing convex regular-
ization can be replaced by smooth convex optimization, enabling more efficient numerical algorithms.
Both properties provide the basis for enhancing future TomoPIV systems.
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