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ABSTRACT. The reconstruction of three-dimensional sparse volume functions from few tomo-
graphic projections constitutes a challenging problem in image reconstruction and turns out to
be a particular instance problem of compressive sensing. The tomographic measurement matrix
encodes the incidence relation of the imaging process, and therefore is not subject to design up
to small perturbations of non-zero entries. We present an average case analysis of the recovery
properties and a corresponding tail bound to establish weak thresholds, in excellent agreement
with numerical experiments. Our result improve the state-of-the-art of tomographic imaging in
experimental fluid dynamics by a factor of three.

1. INTRODUCTION

Research on compressive sensing [8, 3] focuses on properties of underdetermined linear
systems

Ax = b, A ∈ Rm×n, m� n, (1.1)
that ensure the accurate recovery of sparse solutions x from observed measurements b. Strong
assertions are based on random ensembles of measurement matrices A and measure concen-
tration in high dimensions that enable to prove good recovery properties with high probability
[9, 4].

A common obstacle in various application fields are the limited options for designing a mea-
surement matrix so as to exhibit desirable mathematical properties, are very limited. Accord-
ingly, recent research has also been concerned with more restricted scenarios, spurred by their
relevancy to applications (cf. Section 2.3).

Consequently, we consider a representative scenario, motivated by applications in experi-
mental fluid dynamics (Fig. 1). A suitable mathematical abstraction of this setup gives rise to
a huge and severely underdetermined linear system (1.1) that has additional properties: a very
sparse nonnegative measurement matrix A with constant small support of all column vectors,
and a nonnegative sparse solution vector x:

A ≥ 0, x ≥ 0, supp(A•,j) = `� m, ∀j = 1, . . . , n. (1.2)

Our objective is the usual one: relating accurate recovery of x from given measurements b
to the sparsity k = supp(x) of the solution x and to the dimensions m,n of the measurement
matrixA. The sparsity parameter k has an immediate physical interpretation (Fig. 1). Engineers
require high values of k, but are well aware that too high values lead to spurious solutions. The
current practice is based on a rule of thumb leading to conservative low values of k.

In this paper, we are concerned with working out a better compromise along with a mathe-
matical underpinning. The techniques employed are general and only specific to the class of
linear systems (1.1), (1.2), rather than to a particular application domain.
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FIGURE 1. Compressive sensing in experimental fluid dynamics: A multi-
camera setup gathers few projections from a sparse volume function. This
scenario is described by a very large and highly underdetermined sparse lin-
ear system (1.1) having the additional properties (1.2). The sparsity parameter k
reflects the seeding density of a given fluid with particles. Less sparse scenarios
increase the spatial resolution of subsequent studies of turbulent motions, but
compromise accuracy of the reconstruction. Research is concerned with work-
ing out and mathematically substantiating the best compromise.

We regard the measurement matrix A as given. Concerning the design of A, we can only
resort to small random perturbations of the non-zero entries of A, thus preserving the sparse
structure that encodes the underlying incidence relation of the sensor. Additionally, we exploit
the fact that solution vectors x can be regarded as samples from a uniform distribution over
k-sparse vectors, which represents with sufficient accuracy the underlying physical situation.

Under these assumptions, we focus on an average case analysis of conditions under which
unique recovery of x can be expected with high probability. A corresponding tail bound implies
a weak threshold effect and criterion for adequately choosing the value of the sparsity parameter
k. Our results are in excellent agreement with numerical experiments and improve the state-of-
the-art by a factor of three.

Contribution and Organization. In Section 2, we detail the mathematical abstraction of the
imaging process and discuss directly related work. In Section 3, we examine recent results of
compressive sensing based on sparse expanders. This sets the stage for an average case analysis
conducted in Section 5 and corresponding weak recovery properties, that are in sharp contrast
to poor strong recovery properties presented in Section 4. We conclude with a discussion of
quantitative results and their agreement with numerical experiments in Section 6.

Notation. |X| denotes the cardinality of a finite set X and [n] = {1, 2, . . . , n} for n ∈ N.
We will denote by ‖x‖0 = |{i : xi 6= 0}| and Rn

k = {x ∈ Rn : ‖x‖0 ≤ k} the set of k-
sparse vectors. The corresponding sets of non-negative vectors are denoted by Rn

+ and Rn
k,+,

respectively. The support of a vector x ∈ Rn, supp(x) ⊆ [n], is the set of indices of non-
vanishing components of x. With I+(x) = {i : xi > 0}, I0(x) = {i : xi = 0} and I−(x) =
{i : xi < 0}, we have supp(x) = I+(x) ∪ I−(x) and ‖x‖0 = |supp(x)|.

For a finite set S, the set N (S) denotes the union of all neighbors of elements of S where
the corresponding relation (graph) will be clear from the context.
1 = (1, . . . , 1)> denotes the one-vector of appropriate dimension.
A•,i denotes the i-th column vector of a matrix A. For given index sets I, J , matrix AIJ

denotes the submatrix of A with rows and columns indexed by I and J , respectively. Ic, J c

denote the respective complement sets. Similarly, bI denotes a subvector of b.
E[·] denotes the expectation operation applied to a random variable and Pr(A) the probability

to observe an event A.
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2. PRELIMINARIES

2.1. Imaging Setup and Representation. We refer to Figure 2 for an illustration of the math-
ematical abstraction of the scenario depicted by Figure 1. In order to handle in parallel the 2D
and 3D cases, we will use the variable

D ∈ {2, 3}. (2.1)

We measure the problem size in terms of d ∈ N and consider n := dD cells in a square
(D = 2) or cube (D = 3) and m := DdD−1 rays, compare Fig. 2, left and right. It will be
useful to denote the set of cells by C = [n] and the set of rays by R = [m]. The incidence
relation between cells and rays is given by a m× n measurement matrix ADd

(ADd )ij =

{
1, if j-th ray intersects i-th cell,
0, otherwise,

(2.2)

for all i ∈ [m], j ∈ [n]. Thus, cells and rays correspond to columns and rows of ADd .
The incidence relation encoded by ADd gives rise to the equivalent representation in terms of

a bipartite graph G = (C,R;E) with left and right vertices C and R, and edges cr ∈ E iff
(ADd )rc = 1. Figure 2 illustrates that G has constant left-degree ` = D. It will be convenient
to use a separate symbol `.

For a fixed vertex i, any adjacent vertex j ∼ i is called neighbor of i. For any non-negative
measurement matrix A and the corresponding graph, the set

N (S) = {i ∈ [m] : i ∼ j, j ∈ S} = {i ∈ [m] : Aij > 0, j ∈ S}

contains all neighbors of S. The same notation applies to neighbors of subsets S ⊂ [m] of right
nodes.

With slight abuse, we call the matrix ADd that encodes the adjacency r ∼ c of vertices
r ∈ R and c ∈ C adjacency matrix of the induced bipartite graph G, deviating from the
usual definition of the adjacency matrix of a graph that encodes the adjacency of all nodes
vi ∼ vj, V = C ∪ R. Moreover, in this sense, we will call any non-negative matrix adjacency
matrix, based on its non-zero entries.

Let A be the non-negative adjacency matrix of a bipartite graph with constant left degree `.
The perturbed matrix Ã is computed by uniformly perturbing the non-zero entries Aij > 0

to obtain Ãij ∈ [Aij − ε, Aij + ε], and by normalizing subsequently all column vectors of Ã.
In practice, such perturbation can be implemented by discretizing the image by radial basis
functions and choose their locations on an irregular grid, see [14].

The following class of graphs plays a key role in the present context and in the field of
compressed sensing in general.

Definition 2.1. A (ν, δ)-unbalanced expander is a bipartite simple graph G = (L,R;E) with
constant left-degree ` such that for any X ⊂ L with |X| ≤ ν, the set of neighbors N (X) ⊂ R
of X has at least size |N (X)| ≥ δ`|X|.

2.2. Deviation Bound. We will apply the following inequalities for bounding the deviation of
a random variable from its expected value based on martingales, that is on sequences of random
variables (Xi) defined on a finite probability space (Ω,F , µ) satisfying

E[Xi+1|Fi] = Xi, for all i ≥ 1, (2.3)

where Fi denotes an increasing sequence of σ-fields in F with Xi being Fi-measurable.
This setting applies to random variables associated to measurements that are statistically

dependent due to the intersection of projection rays (cf. Fig. 2).
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FIGURE 2. Left: 2D imaging geometry with d2 cells and 2d projection rays
(here: d = 6). The incidence relation is given by the measurement matrix
A = A2

d (cf. Eqn. (2.2)) which is the adjacency of a bipartite graph with constant
left degree ` = 2. Right: 3D imaging geometry with d3 cells and 3d2 rays (here:
d = 7). The incidence relation given by the measurement matrix A = A3

d is the
adjacency of a bipartite graph with constant left degree ` = 3.

Theorem 2.1 (Azuma’s Inequality [1, 6]). Let (Xi)i=0,1,2,... be a sequence of random variables
such that for each i,

|Xi −Xi−1| ≤ ci. (2.4)
Then, for all j ≥ 0 and any δ > 0,

Pr
(
|Xj −X0| ≥ δ

)
≤ 2 exp

(
− δ2

2
∑j

i=1 c
2
i

)
. (2.5)

2.3. Related Work. Although it was shown [3] that random measurement matrices are op-
timal for Compressive Sensing, in the sense that they require a minimal number of samples
to recover efficiently a k-sparse vector, recent trends [2, 20] tend to replace random dense
matrices by adjacency matrices of ”high quality” expander graphs. Explicit constructions of
such expanders exist, but are quite involved. However, random m × n binary matrices with
nonreplicative columns that have b`nc entries equal to 1, perform numerically extremely well,
even if ` is small, as shown in [2]. In [12] it is shown that perturbing the elements of adjacency
matrices of expander graphs with low expansion, can also improve performance. This findings
complement our prior work in [14], where we observed that by slightly perturbing the entries of
a tomographic projection matrix its reconstruction performance can be improved significantly.

We wish to inspect the bounds on the required sparsity that guarantee exact reconstruction
of most sparse signals, and corresponding critical parameter values similar to weak thresholds
in [10, 11]. The authors have computed sharp reconstruction thresholds for Gaussian measure-
ments, such that for given a signal length n and numbers of measurements m, the maximal
sparsity value k which guarantees perfect reconstruction can be determined precisely.

For a matrix A ∈ Rm×n, Donoho and Tanner define the undersampling ratio δ = m
n
∈ (0, 1)

and the sparsity as a fraction ofm, k = ρm, for ρ ∈ (0, 1). The so called strong phase transition
ρS(δ) indicates the necessary undersampling ratio δ to recover all k-sparse solutions, while the
weak phase transition ρW (δ) indicates when x∗ with ‖x∗‖0 ≤ ρW (δ) ·m can be recovered with
overwhelming probability by linear programming.

Relevant for TomoPIV is the setting as δ → 0 and n → ∞, that is severe undersampling,
since the number of measurements is of order O(104) and discretization of the volume can
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be made accordingly fine. For Gaussian ensembles a strong asymptotic threshold ρS(δ) ≈
(2e log(1/δ)−1 and weak asymptotic threshold ρW (δ) ≈ (2 log(1/δ)−1 holds, see e.g. [10].
In this highly undersampled regime, the asymptotic thresholds are the same for nonnegative
and unsigned signals. Exact sparse recovery of nonnegative vectors has been also studied in a
series of recent papers [12, 18], while [15, 16] additionally assumes that all nonzero elements
are equal to each other. As expected, additional information, improves the recoverable sparsity
thresholds.

2.3.1. Strong Recovery. The maximal sparsity k depending on m and n, such that all sparse
signals are unique and coincide with the unique positive solution of Ax = b, is investigated
in [10, 11] from the perspective of convex geometry by studying the face lattice of the convex
polytope conv{A•,1, . . . , A•,n, 0}. It is related to the nullspace property for nonnegative signals
in what follows.

Theorem 2.2 ([10, 12, 18, 14]). Let A ∈ Rm×n be an arbitrary matrix. Then the following
statements are equivalent:

(a) Every k-sparse nonnegative vector x∗ is the unique positive solution of Ax = Ax∗.
(b) The convex polytope defined as the convex hull of the columns in A and the zero vector,

i.e. conv{A•,1, . . . , A•,n, 0} is outwardly k-neighborly.
(c) Every nonzero null space vector has at least k + 1 negative (and positive) entries.

2.3.2. Weak Recovery. Thm. 2 in [10] shows the equivalence between (k, ε)-weakly (out-
wardly) neighborliness and weak recovery, i.e. uniqueness of all except a fraction ε of k-sparse
nonnegative vectors. Weak neighborliness is the same thing as saying that A∆n−1

0 has at least
(1− ε)-times as many (k− 1)-faces as the simplex ∆n−1

0 . A different form of weak recovery is
to determine the probability that a random k-sparse positive vector by probabilistic nullspace
analysis. This concepts are related for an arbitrary sparse vector with exactly k nonnegative
entries in the next theorem.

Theorem 2.3. Let A ∈ Rm×n be an arbitrary matrix. Then the following statements are
equivalent:

(a) The k-sparse nonnegative vector x∗ supported on S, |S| = k, is the unique positive
solution of Ax = Ax∗.

(b) Every nonzero null space vector cannot have all its negative components in S.
(c) ASRk

+ is a k-face of ARn
+, i.e. there exists a hyperplane separating the cone generated

by the linearly independent columns {A•,j}j∈S from the cone generated by the columns
of the off-support {A•,j}j∈Sc .

Proof. Statement (a) holds if and only if there is no v 6= 0 such that Av = 0 and vSc ≥ 0,
compare for e.g. [13, Thm. 1]. Thus (a)⇔ (b). By [11, Lem. 5.1], (a)⇔ (c) holds as well. �

If, in addition, all k nonzero entries are equal to each other, then a stronger characterization
holds.

Theorem 2.4 ([13, Prop. 2]). Let A ∈ Rm×n be an arbitrary matrix. Then the following
statements are equivalent:

(a) The k-sparse binary vector x∗ ∈ {0, 1}n supported on S, |S| = k, is the unique solution
of Ax = Ax∗ with x ∈ [0, 1]n.

(b) Every nonzero null space vector cannot have all its negative components in S and the
positive ones in Sc.

(c) There exists a vector r such that Diag(z∗)A>r > 0, with z∗ := e− 2x∗.
(d) 0 ∈ Rm is not contained in the convex hull of the columns of ADiag(z∗), i.e. 0 /∈

conv{z∗1A•,1, . . . , z∗nA•,n, 0}, with z∗ := e− 2x∗.
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Proof. If x∗ is unique in {0, 1}n, it is unique in [0, 1]n as well. Uniqueness in [0, 1]n holds, for
e.g. by [13, Thm. 1], if there is no v 6= 0 such that Av = 0, vSc ≥ 0 and vS ≤ 0, which shows
equivalence to (b). With D := Diag(e − 2x∗) and DD = I , (b) can be rewritten as follows:
there is no v 6= 0 such that ADDv = 0, Dv ≥ 0, Dv 6= 0. With u := Dv, the above condition
becomes:

ADu = 0, u ≥ 0, u 6= 0 , has no solution ,

which by Gordon’s theorem of alternative gives the equivalent certificate (c):

∃r such that DA>r > 0 . (2.6)

In other words, a small k-subset of the columns of A, are ”flipped” by multiplication with −1,
and these modified columns together with all remaining ones can be separated from the origin,
which shows equivalence to (d), i.e. 0 is not contained in the convex hull of these points. �

Note that statement (d) is related to the necessary condition for uniqueness in [18, Thm. 1].
We further comment on Thm. (c) from a probabilistic viewpoint. Condition (c) says that all
points defined by the columns ofADiag(e−2x∗) are located in a single half space defined by a
hyperplane through the origin with normal r. Conditions under which this is likely to hold were
studied by Wendel [19]. This problem is also directly related to the basic pattern recognition
problem concerning the linear classification1 of any dichotomy of a finite point set [5].

Assuming n points in Rm to be in general position, that is any subset of m vectors is lin-
early independent, and that the distribution from which the given point set is regarded as an
i.i.d. sample set is symmetric with respect to the origin, then condition (2.6) holds with proba-
bility

Pr(n,m) =
1

2n−1

m−1∑
i=0

(
n− 1

i

)
. (2.7)

As Figure 3 illustrates, Pr(n,m) = 1 if n/m ≤ 1, due to the well known fact that any di-
chotomy of m + 1 points in Rm can be separated by a hyper-plane [17, 7]. For increasing
dimension m → ∞, this also holds almost surely if n/m < 2, which can be easily deduced
by applying a binomial tail bound. Accordingly, assuming that the measurement matrix A con-
forms to the assumptions, the authors of [13] conclude that an existing binary solution to (1.1)
is unique with probability (2.7) for underdetermined systems with ratio m/n > 1/2.

We adopt this viewpoint in Section 5.4 and develop a criterion for unique recovery with high
probability using the given measurement matrix (2.2), based on a probabilistic average case
analysis of condition (3.9) (Section 5.1). This criterion currently characterizes best the design
of tomographic scenarios (Fig. 2), with recovery performance guaranteed with high probability.
We conclude this section by mentioning that exact nonasymptotic recovery results for a k-sparse
nonnegative vector are obtained in [11, Thm. 1.10] by exploiting Wendel’s theorem. Donoho
and Tanner show that the probability of uniqueness of a k-sparse nonnegative vector equals
Pr(n−m,n− k), provided A satisfies certain conditions which do not hold in our considered
application.

3. EXPANDERS, PERTURBATION, AND WEAK RECOVERY

This section collects recent results of recovery properties based on expanders associated with
sparse measurement matrices, possibly after a random perturbation of the non-zero matrix en-
tries. Section 3.3 applies these results to our specific setting in a form suitable for a probabilistic
analysis of recovery performance presented in Section 5.

1In this context, “linear” means affine decision functions.
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FIGURE 3. The probability Pr(n,m) given by (2.7) that n points in general
position in Rm can be linearly separated [19]. This holds with probability
Pr(n,m) = 1 for n/m ≤ 1, and with Pr(n,m)→ 1 ifm→∞ and 1 ≤ n/m <
2.

3.1. Expanders and Recovery. The following theorem is a slight variation of Theorem 4 in
[18] tailored to our specific setting.

Theorem 3.1. Let A be the adjacency matrix of a (ν, δ)-unbalanced expander and 1 ≥ δ >√
5−1
2

. Then for any k-sparse vector x∗ with k ≤ ν
(1+δ)

, the solution set {x : Ax = Ax∗, x ≥ 0}
is a singleton.

Proof. We will show that every nonzero null space vector has at least ν
(1+δ)

+ 1 negative and
positive entries. Then Theorem 2.2 will provide the desired assertion.

Suppose without loss of generality that there is a vector v ∈ ker(A) \ {0} with

s := |I−(v)| ≤ ν

(1 + δ)
. (3.1)

Then
`|I−(v)| ≥ |N (I−(v))| ≥ δ`s, (3.2)

where the second inequality follows by assumption due to the expansion property.
Denoting by S the support of v, S = I−(v) ∪ I+(v), we have

N (I−(v)) = N (I+(v)) = N (S) , (3.3)

since otherwise Av 6= 0 because A is non-negative.
From `|I+(v)| ≥ |N (I+(v))|, (3.3) and (3.2), we obtain

|I+(v)| ≥ δs . (3.4)

Thus,
|S| = |I−(v)|+ |I+(v)| ≥ 2δs ≥ (1 + δ)s. (3.5)

Let S̃ ⊆ S such that |S̃| = b(δ + 1)sc. Thus |S̃| ≤ ν and

|N (S̃)| ≥ δ`|S̃| ≥ δ`(δ + 1)s > s` (3.6)

provided δ(1 + δ) > 1 ⇔ δ > (
√

5− 1)/2. Summarizing, we get s` < |N (S̃)| ≤ |N (S)| =
|N (I−(v))| ≤ s`, hence a contradiction. �

The assertion of Theorem 3.1 solely relies on the expansion property of the measurement
matrix A. Theorem 3.4 below will be based on it and in turn the results of Section 5.2.
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3.2. Perturbed Expanders and Recovery. We describe next an alternative route based on the
complete (Kruskal) rank r0 = r0(A) of a measurement matrix A. This is the maximal integer
r0 such that every subset of r0 columns of A is linearly independent.

While this number is combinatorially difficult to compute in practice, both the number and
the corresponding recovery performance can be enhanced by relating it to a particular expansion
property of the bipartite graph associated to a perturbed measurement matrix Ã. The latter can
be easily computed in practice while preserving its sparsity, i.e. the constant left-degree `.

Theorem 3.2 ([14, Thm. 6.2], [12, Thm. 4.1]). Let A be a non-negative matrix with ` non-zero
entries in each column and complete rank r0 = r0(A). Then |I−(v)| ≥ r0/` for all nullspace
vectors v ∈ ker(A).

Remark 3.1. In view of Theorem 2.2, (c), Theorem 3.2 says that all k-sparse non-negative
vectors x can be uniquely recovered if k ≤ dr0/`− 1e.

The following Lemma asserts that by a perturbation of the measurement matrix the complete
rank, and hence the recovery property, may be enhanced provided all subsets of columns, up to
a related cardinality, entail an expansion that is less however than the one required by Theorem
3.1.

Lemma 3.3 ([12, Lemma 4.2]). Let A be a non-negative matrix with ` non-zero entries in each
column. Suppose that for a submatrix formed by r̃0 columns of A it holds that |N (X)| ≥ |X|,
for each subset X ⊂ C of columns of cardinality |C| ≤ r̃0, and with respect to the bipartite
graph induced by A. Then there exists a perturbed matrix Ã that has the same structure as A
such that its complete rank satisfies r0(Ã) ≥ r̃0.

Theorem 3.5 below and Section 5.4 will be based on Theorem 3.2 and Lemma 3.3.

3.3. Weak Reconstruction Guarantees. We introduce some further notions used subsequently
to state our results. Let A denote the matrix ADd defined by (2.2), and consider a subset X ⊂ C
of |X| = k columns and a corresponding k-sparse vector x. Then b = Ax has support N (x),
and we may remove the subset of N (X)c = (N (X))c rows from the linear system Ax = b
corresponding to br = 0, ∀r ∈ R. Moreover, based on the observation N (X), we know that

X ⊆ N (N (X)) and N (N (X)c) ∩X = ∅. (3.7)

Consequently, we can restrict the linear system Ax = b to the subset of columns N (N (X)) \
N (N (X)c) ⊂ C. This will be detailed below by Proposition 5.1.

In practical applications, the reconstruction of a random k-sparse vector x will be based on
a reduced linear system with the above dimensions. These dimensions will be the same for all
random sets X = supp(x) contained in N (N (X)). Consequently, in view of a probabilistic
average case analysis conducted in Section 5, it suffices to measure the expansion with respect
to these sets.

Taking this into account, the following theorem tailors Theorem 3.1 to our specific setting.

Theorem 3.4. Let A be the adjacency matrix of a bipartite graph such that for all random
subsets X ⊂ C of |X| ≤ k left nodes, the set of neighbors N (X) of X satisfies

|N (X)| ≥ δ`|N (N (X)) \ N (N (X)c)| with δ >

√
5− 1

2
. (3.8)

Then, for any k-sparse vector x∗, the solution set {x : Ax = Ax∗, x ≥ 0} is a singleton.

Likewise, the following theorem applies the statements of Section 3.2 to our specific setting.
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Theorem 3.5. Let A be the adjacency matrix of a bipartite graph such that for all subsets
X ⊂ C of |X| ≤ k left nodes, the set of neighbors N (X) of X satisfies

|N (X)| ≥ δ`|N (N (X)) \ N (N (X)c)| with δ >
1

`
. (3.9)

Then, for any k-sparse vector x∗, there exists a perturbation Ã of A such that the solution set
{x : Ãx = Ãx∗, x ≥ 0} is a singleton.

The consequences of Theorems 3.4 and 3.5 are investigated in Section 5 by working out
critical values of the sparsity parameter k for which the respective conditions are satisfied with
high probability.

4. STRONG EQUIVALENCE

In [14] we tested the properties of the discrete tomography matrix in focus against various
conditions, like the null space property, the restricted isometry property, etc., and predicted an
extremely poor worst case performance of such a measurement system. In the 3D case we
showed that the strong threshold on sparsity, that is the maximal sparsity level k0 for which
recovery of all k-sparse (positive) vectors, k ≤ k0, is guaranteed, is a constant, not depending
on the undersampling ratio d.

4.1. Unperturbed Systems. Given an indexing of cells and rays, we can rewrite the projection
matrix ADd ∈ RDdD−1×dD from (2.2) in closed form as

ADd :=



(
Id ⊗ 1Td

1Td ⊗ Id

)
, if D = 2 , 1>d ⊗ Id ⊗ Id

Id ⊗ 1>d ⊗ Id
Id ⊗ Id ⊗ 1>d

 , if D = 3 .

(4.1)

Since for this matrices a sparse nullspace basis can be computed, we can derive the maximal
sparsity via the nullspace property, as shown next.

Proposition 4.1. [14, Prop. 2.2, Prop. 3.2] Let D ∈ {2, 3}, d ∈ N, d ≥ 3 and ADd from (4.1).
Define BD

d ∈ RdD×(d−1)D as

BD
d :=



(
−1Td−1
Id−1

)
⊗

(
−1Td−1
Id−1

)
, if D = 2,(

−1>d−1
Id−1

)
⊗

(
−1>d−1
Id−1

)
⊗

(
−1>d−1
Id−1

)
, if D = 3 .

(4.2)

Then the following statements hold

(a) ADd B
D
d = 0.

(b) Every column in BD
d has exactly 2D nonzero (2D−1 positive, 2D−1 negative) elements.

(c) BD
d is a full rank matrix and rank(BD

d ) = (d− 1)D.
(d) ker(ADd ) = span{BD

d }, i.e. the columns of BD
d provide a basis for the null space of

ADd .
(e) rank(ADd ) = dD − (d− 1)D.
(f)
∑n

i=1 vi = 0 holds for all v ∈ ker(ADd ).
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FIGURE 4. Two different non unique 4-sparse ”particle” distributions in a
3 × 3 × 3 volume. Both configurations (represented by black and white dots)
yield identical projections in all three directions. Such nonunique configurations
correspond to positive or negative entries in an 8-sparse nullspace vector of A3

d,
compare to Prop. 4.1.

(g) The Kruskal rang of ADd is 2D − 1, i.e.

min
v∈ker(AD

d )
v 6=0

‖v‖0 = 2D .

(h) Every nonzero nullspace vector has at least 2D−1 negative entries. i.e.

min
v∈ker(AD

d )
v 6=0

|I−(v)| = 2D−1 .

Thus, (g) and (h) imply

Corollary 4.2. For all d ∈ N, d ≥ 3, every
(
2D−1 − 1

)
-sparse vector x∗ is the unique

sparsest solution of ADd x = ADd x
∗. Moreover, for every

(
2D−1 − 1

)
-sparse positive vector

x∗ {x : ADd x = ADd x
∗} is a singleton.

This bound is tight, since we can construct two 2D−1-sparse solutions x1 and x2 such that
ADd x

1 = ADd x
2, compare Fig. 4 for the 3D case. However, when D=3, not every 8-column

combination, or more, in A3
d is linearly dependent. In fact, only a limited number of k-column

combinations can be dependent without violating rank(A3
d) = 3d2 − 3d + 1. It turns out that

this number is tiny for smaller k when compared to
(
n
k

)
. As k increases this number also

grows and equals 1 only when k > rank(A3
d). Likewise, not every 4-sparse binary vector is

nonunique. Due to the simple geometry of the problem it is not difficult to count the ”bad”
4-sparse configurations in 3D. Since they are always located in 4 out of 8 corners of a cuboid
in the d3 cube, compare Fig. 4 left, and there are only two possibilities to choose them, the
probability that a 4-sparse binary vector is unique, equals

1−
2
(
d
2

)3(
d3

4

) = 1− 6(d− 1)2

(d2 + d+ 1)(d3 − 2)(d3 − 3)
= 1−O(d−6)

d→∞−−−→ 1 .

4.2. Perturbed Systems. The weak performance of ADd rests upon its small Kruskal rank. In
order to increase the maximal number k of columns such that all k (or less) column combina-
tions are linearly independent we perturb the nonzero entries of the original matrix ADd . Figure
5, right, indicates that perturbation leads to less sparse nullspace vectors. If we could estimate
the Kruskal rank r̃0 of the perturbed system we could apply Thm. 3.2 and obtain a lower bound
on the sparsity yielding strong recovery for all dr̃0/`− 1e-sparse vectors. However, determin-
ing r̃0 for the perturbed matrix seems impossible. We believe however that it increases with d,
in contrast to the constant 2D − 1 in case of unperturbed systems. Luckily, it will turn out in
Section 5.2 that the weak recovery threshold for unperturbed systems will give a lower bound
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FIGURE 5. Left: The 3D projection matrix A3
5 and, middle, a sparse basis

which spans its nullspace. Right: If we allow a small perturbation of the
nonzero entries of ADd , all corresponding nullspace vectors of the perturbed ma-
trix will be less sparse and lie in a dD−1(d−D)-dimensional subspace, compared
to (d− 1)D in the unperturbed case.

on the strong recovery threshold for perturbed matrices, since reduced systems will be strictly
overdetermined and guaranteed to have full rank.

5. WEAK RECOVERY

In this section, we consider the recovery properties of the 3D setup depicted in Fig. 2 and
establish conditions for weak recovery, that is conditions for unique recovery that holds on
average with high probability. We clearly point out that our conditions do not guarantee unique
recovery in each concrete problem instance.

Remark 5.1. In what follows, the phrase with high probability refers to values of the sparsity
parameter k for which random supports | supp(b)| concentrate around the crucial expected
value NR according to Prop. 5.3, thus yielding a desired threshold effect.

We first inspect in Section 5.1 the effect of sparsity on the expected dimensions of a reduced
system of linear equations, along with its equivalence to the original system. Subsequently, we
establish the aforementioned conditions based on Theorems 3.4 and 3.5, and on the expected
quantities involved in the corresponding conditions.

In particular, we establish such uniqueness conditions for reduced underdetermined systems
of dimension m/n > (

√
5 − 1)/2 ≈ 0.618. Our results are in excellent agreement with

numerical experiments discussed in Section 6.

5.1. Reduced System. We formalize the system reduction described in connection with Eqn. (3.7).
Besides checking its equivalence to the unreduced system, we compute the expected reduced
dimensions together with a deviation bound. Additionally, we determine critical values of the
sparsity parameter k that lead to overdetermined reduced systems.

Recall from Section 2.1 that we regard a given measurement matrix A also as adjacency
matrix of a bipartite graph G = (C,R;E).

5.1.1. Definition and Equivalence.

Definition 5.1. The reduced system corresponding to a given non-negative vector b,

Aredx = bred, Ared ∈ Rmred×nred
+ , (5.1)
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results from A, b by choosing the subsets of rows and columns

Rb := supp(b), Cb := N (Rb) \ N (Rc
b) (5.2)

with

mred := |Rb|, nred := |Cb|. (5.3)

Note that for a vector x and the bipartite graph induced by the measurement matrix A, we
have the correspondence (cf. (3.7))

X = supp(x), Rb = N (X), Cb = N (N (X)) \ N (N (X)c).

We further define

S+ := {x : Ax = b, x ≥ 0} (5.4)

and

S+
red := {x : ARbCb

x = bRb
, x ≥ 0} . (5.5)

The following proposition asserts that solving the reduced system (5.1) will always recover the
support of the solution to the original system Ax = b.

Proposition 5.1. Let A ∈ Rm×n and b ∈ Rm have nonnegative entries only, and let S+ and
S+
red be defined by (5.4) and (5.5), respectively. Then

S+ = {x ∈ Rn : x(Cb)c = 0 and xCb
∈ S+

red}. (5.6)

Proof. Let S := {x ∈ Rn : x(Cb)c = 0 and xCb
∈ S+

red}. We first show S ⊆ S+. Let x ∈ S.
From this x ≥ 0 follows directly. We thus just have to show

∑n
j=1 aijxj = bi,∀i ∈ [n]. Indeed,

for

i ∈ Rb :
n∑
j=1

aijxj =
∑
j∈Cb

aijxj︸︷︷︸
=bi

+
∑

j∈(Cb)c

aij xj︸︷︷︸
=0

= bi ,

whereas for

i ∈ (Rb)
c :

n∑
j=1

aijxj =
∑
j∈Cb

aij︸︷︷︸
=0

xj +
∑

j∈(Cb)c

aij︸︷︷︸
>aij

xj︸︷︷︸
=0

= 0 = bi .

Now let x ∈ S+ and consider any i ∈ (Rb)
c. Then

0 = bi =
n∑
j=1

aijxj =
∑
j∈Cb

aij︸︷︷︸
=0

xj +
∑

j∈(Cb)c

aij︸︷︷︸
>aij

xj (5.7)

holds. Since x ≥ 0, we obtain from (5.7) that xj = 0,∀j ∈ (Cb)
c. To show that ARbCb

xCb
=

bRb
, consider

i ∈ Rb :
∑
j∈Cb

aijxj =
∑
j∈Cb

aijxj +
∑

j∈(Cb)c

aij xj︸︷︷︸
=0

=
n∑
j=1

aijxj = bi .

Hence, x(Cb)c = 0 and xCb
∈ S+

red. Thus x ∈ S. �

In the following two sections, we compute the expected values of the reduced system dimen-
sion (5.3).
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5.1.2. Expected Number of Non-Zero Measurements. We consider the uniform random assign-
ment of k particles to the n = |C| cells c ∈ C. A single cell may be occupied by more than
a single particle. This corresponds to the physical situation that real particles are very small
relative to the discretization depicted by Figure 2. The imaging optics enlarges the appear-
ance of particles, and the action of physical projection rays is adequately represented by linear
superposition.

This scenario gives rise to a random vector x ∈ Rn
k,+ with support | supp(x)| ≤ k. It

generates a vector

b = ADd x ∈ Rm
+ (5.8)

of measurements. We are interested in the expected size of the support of b,

NR := E[| supp(b)|], N0
R := m−NR, (5.9)

that equals the number of projection rays r ∈ R with non-vanishing measurements br 6= 0. We
denote the event br = 0 by the binary random variable2 Xr = 1, i.e. Xr = 0 corresponds to the
event br > 0 that at least a single particle meets ray r.

The probability that a single c is met by ray r is

qd :=
d

|C|
=
d

n
=

1

dD−1
. (5.10)

For k particles, the probability that 0 ≤ i ≤ k particles meet projection ray r is

Pr(br = i) =

(
k

i

)
qidp

k−i
d , pd := 1− qd. (5.11)

Consequently, we have

Pr[Xr = 1] = E[Xr] = pkd, (5.12a)

Pr[Xr = 0] =
k∑
i=1

(
k

i

)
qidp

k−i
d = 1− pkd. (5.12b)

Lemma 5.2. The expected number of non-zero measurements defined by (5.9) is

NR = NR(k) = |R|(1− pkd) = DdD−1
(

1−
(

1− 1

dD−1

)k)
,

N0
R = N0

R(k) = |R| −NR = |R|pkd = DdD−1
(

1− 1

dD−1

)k
.

(5.13)

Proof. Due to the linearity of expectation, summing over all rays gives

NR = E
[∑
r∈R

(1−Xr)
]

= |R|(1− pkd).

�

Remark 5.2. Note that NR specifies the expected value of mred in (5.3) induced by random
k-sparse vectors x ∈ Rn

k,+. See Figure 6 for an illustration.

2We economize notation here by re-using the symbol X , a random indicator vector indexed by rays (right
nodes) r ∈ R. Due to the context, there should be no danger of confusion with X = supp(x) denoting random
subsets of left nodes used in other sections.
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FIGURE 6. The expected number NR of non-zero measurements (5.12). For
highly sparse scenarios (small k), the expected support (5.9) of the measurement
vector | supp(b)| ≈ 3k. For large values of k, this rate decreases due to the
multiple incidence of cells and projection rays.

Bounding the Deviation of N0
R. We are interested in how sharply the random number X =∑

r∈RXr of zero measurements peaks around its expected value N0
R = E[X] given by (5.13).

We derive next a corresponding tail bound by regarding a sequence of k randomly located
cells and by bounding the difference of subsequent conditional expected values of the random
variable X . Theorem 2.1 then provides a bound for the deviation |X − E[X]|.

Let the set of raysR represent the elementary events corresponding to the observationsXr =
1 or Xr = 0 for each ray r ∈ R, i.e. ray r corresponds to a zero measurement or not.

Let Fi ⊂ 2R, i = 0, 1, 2, . . . , denote the σ-field generated by the collection of subsets of R
that correspond to all possible events after having observed i randomly selected cells. We set
F0 = {∅, R}. Because observing cell i + 1 just further partitions the current state based on
the previously observed i cells by possibly removing some ray (or rays) from the set of zero
measurements, we have a nested sequence (filtration) F0 ⊆ F1 ⊆ · · · ⊆ Fk of the set 2R of all
subsets of R.

Based on this, for a fixed value of the sparsity parameter k, we define the sequence of random
variables

Yi = E[X|Fi], i = 0, 1, . . . , k, (5.14)

where Yi, i = 0, 1, . . . , k − 1, are the random variables specifying the expected number of
zero measurements after having observed k randomly selected cells, conditioned on the subset
of events Fi determined by the observation of i randomly selected cells. Consequently, Y0 =
E[X] = N0

R due to the absence of any information, and Yk = X is just the observed number
of zero measurements. The sequence (Yi)i=0,...,k is a martingale by construction satisfying
E[Yi+1|Fi] = Yi, that is condition (2.3).

Proposition 5.3. Let N0
R = E[X] be the expected number of zero measurements for a given

sparsity parameter k, given by (5.13). Then, for any δ > 0,

Pr
(
|X −N0

R| ≥ δ
)
≤ 2 exp

(
− 1− p2d

(1− p2kd )

δ2

2D2

)
↗ 2 exp

(
− δ2

2D2k

)
if d→∞.

(5.15)

This result shows that for large problem sizes d occurring in applications, concentration
of observations of N0

R primarily depends on the sparsity parameter k. As a consequence, the
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bound enables suitable choices of k = k(d) of the sparsity parameter depending on the problem
size.

For example, typical values

k =

{
0.05d in 2D,
0.05d2 in 3D,

(5.16)

chosen by engineers3 in applications according to a rule of thumb, result in

Pr
(
|X −N0

R| ≥ δ
)
≤

2 exp
(
− 5

2d
δ2
)

in 2D,

2 exp
(
− 10

9d2
δ2
)

in 3D.
(5.17)

For the 3D case (5.16), the probability to observe deviations from N0
R larger than 1% drops

below 0.01 for problem sizes d ≥ 77, which is common in practice.
Thus, the bound (5.15) is strong enough to indicate not only that (5.16) is a particular sensible

choice, but also leads to more proper choices of k for applications, which still give highly
concentrated values of observations of N0

R. This is the essential prerequisite for threshold
effects of unique recovery from sparse measurements.

Proof (Proposition 5.3). Let R0
i−1 ⊂ R denote the subset of rays with zero measurements after

the random selection of i − 1 < k cells. For the remaining k − (i − 1) trials, the probability
that not any cell incident with some ray r ∈ R0

i−1 will be selected, is

p
k−(i−1)
d = E[Xr|Fi−1], (5.18)

with pd given by (5.11). Consequently, by linearity, the expectation Yi−1 of zero measurements
given |R0

i−1| zero measurements after the selection of i− 1 cells, is

Yi−1 = E[X|Fi−1] =
∑

r∈R0
i−1

p
k−(i−1)
d . (5.19)

Now suppose we observe the random selection of the i-th cell. We distinguish two possible
cases.

(1) Cell i is not incident with any ray r ∈ R0
i−1. Then the number of zero measurements

remains the same, and

Yi =
∑

r∈R0
i−1

pk−id . (5.20)

Furthermore,

Yi − Yi−1 =
∑

r∈R0
i−1

(
pk−id − pk−(i−1)d

)
= |R0

i−1|pk−id (1− pd)

≤ (|R| − 1)pk−id qd.

(5.21)

(2) Cell i is incident with 1, . . . , D rays contained in R0
i−1. Let R0

i denote the set R0
i−1 after

removing these rays. Then

Yi =
∑
r∈R0

i

pk−id .

3Personal communication.
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FIGURE 7. The expected number NC = E[|Cb|] of cells supporting observed
measurement vectors b, given by (5.23). Starting with rate NC ∝ k for very
small values of k, it quickly increases and exceeds NR (Fig. 6), thus leading to
underdetermined reduced systems (5.1).

Furthermore, since R0
i ⊂ R0

i−1 and |R0
i−1 \R0

i | ≤ D,

Yi−1 − Yi =
∑

r∈R0
i−1\R0

i

p
k−(i−1)
d −

∑
r∈R0

i

(
pk−id − pk−(i−1)d

)
≤ Dpk−i+1

d −
∑
r∈R0

i

pk−id (1− pd) ≤ Dpk−i+1
d .

(5.22)

Comparing the bounds (5.21) and (5.22), we have with |R|qd = D,

(|R| − 1)qdp
k−i
d = (D − qd)pk−id , Dpdp

k−i
d = (D −Dqd)pk−id .

Thus, we take the larger bound (5.21), drop the immaterial −1 in the first factor and compute
k∑
i=1

(Dp
(k−i)
d )2 = D21− p2kd

1− p2d
.

Inserting pd from (5.11) and expanding in terms of d−1 at 0, we obtain

1− p2kd
1− p2d

=

{
k + (k − k2)d−1 +O(d−2), in 2D
k + (k − k2)d−2 +O(d−4), in 3D

d→∞−−−→ k.

Applying Theorem 2.1 completes the proof. �

5.1.3. Expected Number of Cells. In the previous section, we computed the expected number
of measurementsNR = E[| supp(b)|] induced by a random unknown k-sparse vector x (Lemma
5.2) along with a tail bound for N0

R = |R| −NR (Prop. 5.3).
In the present section, we determine the expected number of cells corresponding to NR,

denoted by NC . We confine ourselves to the practically more relevant 3D case.
As in the previous section, X ∈ {0, 1}|R| denotes a random vector indicating subsets of

projection rays. Xr = 1, r ∈ R, corresponds to a zero observation along ray r. For a subset of
rays Rb ⊂ R, we say that the corresponding subset of cells Cb in (5.2) supports Rb.

Proposition 5.4. For a given value of the sparsity parameter k, the expected size of subsets of
cells that support random subsets Rb ⊂ R of observed non-zero measurements, is

NC = NC(k) = d3
(

1− 3
(

1− 1

d2

)k
+ 3
(

1− 2d− 1

d3

)k
−
(

1− 3d− 2

d3

)k)
. (5.23)
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Proof. We partition the set of rays R = R1 ∪R2 ∪R3 according to the three projection images
(Fig. 2) and associate with the cells C the corresponding set of triples of projection rays

R1,2,3 =
{

(r1, r2, r3) : ∩3i=1 ri 6= ∅, ri ∈ Ri, i = 1, 2, 3
}
,

with each triple intersecting in a single cell. Thus, we have |R1,2,3| = |C| = d3, and each cell
cijk = ri ∩ rj ∩ rk belongs to the set Cb supporting Rb if Rb ∩ (ri ∪ rj ∪ rk) 6= ∅. In terms of
random variables Xr indicating zero-measurements by Xr = 1, this means that cijk ∈ Cb if not
Xri = Xrj = Xrk = 1. Thus,

NC = E
[ ∑
R1,2,3

(1−Xr1)(1−Xr2)(1−Xr3)
]

=
∑
R1,2,3

(
1−

(
E[Xr1 ] + E[Xr2 ] + E[Xr3 ]

)
+

∑
1≤i<j≤3

E[XriXrj ]− E[Xr1Xr2Xr3 ]
)
.

This expression takes into account the intersection of projection rays ri, rj (inclusion-exclusion
principle) in order not to overcount the number of supporting cells.

We have E[Xri ] = pkd = (1− d−2)k by (5.12) and (5.11). The event XriXrj = 1 means that
both rays correspond to zero measurements, which happens with probability(

1− |ri ∪ rj|
|C|

)k
=
(

1− 2d− 1

d3

)k
.

We have three pairs of sets of rays from R = R1 ∪ R2 ∪ R3, and each of the d2 rays ri ∈ Ri

intersects with d rays rj ∈ Rj . Finally, three intersecting rays correspond to zero measurements
with probability (

1− |r1 ∪ r2 ∪ r3|
|C|

)k
=
(

1− 3d− 2

d3

)k
,

for each of the d3 cells c ∈ C. �

Remark 5.3. Note that NC specifies the expected value of nred in (5.3) induced by random
k-sparse vectors x ∈ Rn

k,+. See Figure 7 for an illustration.

5.1.4. Overdetermined Reduced Systems: Critical Sparsity k. For small value of k, that is
for highly sparse scenarios, the expected value NR(k) ≈ 3k grows faster than NC(k) ≈ k.
Consequently, the expected reduced system due to Definition 5.1 will be overdetermined. This
holds up to a critical value k ≤ kcrit because for increasing values of k, it is more likely that
several particles are incident with some projection ray, making NC increasing faster than NR.

Proposition 5.5. For k ≤ kcrit, the reduced system (5.1) will be overdetermined with high
probability, where kcrit solves

NR(kcrit) = NC(kcrit) (5.24)
and NR(kcrit), NC(kcrit) are given by (5.13) and (5.23).

Figure 8 shows the dependency kcrit = kcrit(d) on the problem size d, as defined by (5.24) .

5.2. Unperturbed Systems. We consider the recovery properties of the 3D setup depicted in
Fig. 2, based on Theorem 3.4 and on the expected quantities involved in the corresponding
condition (3.8), as worked out in Section 5.1. Concerning the interpretation of the following
claims, we refer to Remark 5.1.

Proposition 5.6. The systemAx = b, with measurement matrixA given by (2.2), admits unique
recovery of k-sparse non-negative vectors x with high probability, if

k ≤ NC(kδ)

1 + δ
=

1

3δ(1 + δ)
NR(kδ), δ >

√
5− 1

2
, (5.25a)
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FIGURE 8. Values kcrit = kcrit(d) of the sparsity parameter such that k ≤ kcrit
yield overdetermined reduced systems (5.1). For the depicted and practically
relevant range of d, the slope of the log-log curve slightly decreases
1.65 . . . 1.55.

where kδ solves

NR(kδ) = 3δNC(kδ) (5.25b)

and NR(k), NC(k) are given by (5.13) and (5.23).

Proof. The assertion follows from replacing the quantities forming condition (3.8) by their
expected values, due to Remarks 5.2 and 5.3. �

Remark 5.4. Equation (5.25b) shows that unique recovery of a k-sparse, k ≤ nred

(1+δ)
, non-

negative vector can be expected using the unperturbed measurement matrix provided the re-
duced system (5.1) is by a factor mred ≥ 1.854nred overdetermined. See Figure 9 for an
illustration.

5.3. Perturbed Systems. Analogously to the previous section, we evaluate the average recov-
ery performance using perturbed systems based on Theorem 3.5.

Proposition 5.7. The system Ãx = b, with perturbed measurement matrix Ã given by (2.2),
admits unique recovery of k-sparse non-negative vectors x with high probability, if k satisfies
condition k ≤ kcrit from Prop. 5.5, that is, if the reduced system (5.1) is overdetermined.

Proof. Immediate from Theorem 3.5, replacing the quantities forming condition (3.9) by their
expected values, and taking into account ` = 3 for the measurement matrix (2.2) and the case
D = 3. �

Remark 5.5. In view of this assertion and Remark 5.4, it is remarkable that a significant gain
of recovery performance can be obtained by a simple device: structure-preserving perturbation
of the measurement matrix. See Figure 9 for an illustration.

5.4. Underdetermined Perturbed Systems. Based on (2.7) and the average case analysis of
condition (3.9) (Section 5.1), we devise a criterion for determining the maximal sparsity value
k (minimal sparse scenario), such that any k-sparse vector x can be uniquely recovered with
high probability using the measurement matrix A given by (2.2). Unlike Propositions 5.6 and
5.7, we specifically consider here less sparse scenarios that result in underdetermined reduced
systems (5.1).

Proposition 5.8. LetA be a matrix satisfying the assumptions of Lemma 3.3 with r̃0 = NR(kmax),
where kmax solves

NR(k̃max) = δNC(k̃max), δ >

√
5− 1

2
, (5.26)
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FIGURE 9. Critical upper bound sparsity values k = k(d) that guarantee unique
recovery of k-sparse vectors x on average with high probability. From bottom
to top: kδ (5.25a) for unperturbed matrices A, kcrit (5.24) resulting in overdeter-
mined reduced systems, kmax (5.27) for underdetermined perturbed matrices A,
and fully random measurement matrices.

with NR(k), NC(k) given by (5.13) and (5.23). Then a k-sparse vector x can be uniquely
recovered with high probability, if

k ≤ kmax =
NR(k̃max)

3
. (5.27)

Proof. By assumption and Lemma 3.3, Theorem 3.2 (see also Remark 3.1) implies (5.27),
thereby taking into account that Eqn. (5.26) defining kmax reflects the expected version of
condition (3.8), subdivided by the factor 3 due to (5.27). �

[19, 5, 13] Figure 9 illustrates the value kmax (5.27) and compares it to the previous results.

Finally, we comment on the uniqueness condition established in [13] which corresponds
to the top k(d) curve in Figure 9. This result does not apply to our setting. The reason is
that a basic assumption underlying the application of (2.7) does not hold. While after some
perturbation the points corresponding to the columns of Ã and the sparsity value |I−(x)| = k
are in general position, the underlying distribution lacks symmetry with respect to the origin.
As a result, we cannot establish the superior performance of “fully” random sensors considered
in [13].

5.5. Two Cameras are Not Enough. In the present section, we briefly discuss how the pre-
viously obtained bounds on sparsity apply in the 2D scenario. To this end, we first compute
the expected value of nonempty cells connected to Rb measurements generated by a k sparse
nonnegative vector.

Proposition 5.9. In 2D, the expected size of subsets of cells that support random subsets Rb ⊂
R of observed non-zero measurements, is

NC = NC(k) = d2
(

1−
(

1− 1

d

)k)2

, (5.28)

for a given sparsity parameter k,

Proof. We partition the set of raysR = R1∪R2 according to the two projection images (Fig. 2),
left, and associate with the cells C the corresponding set of pairs of projection rays

R1,2 =
{

(r1, r2) : ∩2i=1 ri 6= ∅, ri ∈ Ri, i = 1, 2
}
,
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with each pair intersecting in a single cell. Thus, we have |R1,2| = |C| = d2, and each
cell cij = ri ∩ rj belongs to the set Cb supporting Rb if Rb ∩ (ri ∪ rj) 6= ∅. In terms of
random variables Xr indicating zero-measurements by Xr = 1, this means that cij ∈ Cb if not
Xri = Xrj = 1. Thus,

NC = E
[∑
R1,2

(1−Xr1)(1−Xr2)
]

=
∑
R1,2

(
1−

(
E[Xr1 ] + E[Xr2 ]

)
+

∑
1≤i<j≤2

E[XriXrj ]]
)
,

taking the intersection of projection rays ri, rj into account. We obtained E[Xri ] = pkd =
(1 − 1

d
)k in (5.12) and (5.11). The event that both rays correspond to zero measurements

XriXrj = 1 happens with probability(
1− |ri ∪ rj|

|C|

)k
=
(

1− 2d− 1

d2

)k
=
(

1− 1

d

)2k
.

�

By Prop. 5.9 and Lemma 5.2 we can now compute the the expected ratio of the dimensions of
the reduced system, further denoted by c. We solve the polynomialNR(k) = cNC(k) according
to and (5.28). Interesting are the values c ∈ {2δ, 1, δ, 1

2
}. For example, if c = 2δ, we obtain

guaranteed recovery of all 1-sparse vectors, which also equals the strong threshold for the 2D
case. If c = 1, we obtain, on average, that any k-sparse vector x, with

k ≤ kcrit =
log
(
d−2
d

)
log
(
d−1
d

) ≈ 2 , (5.29)

induces reduced reduced overdetermined systems. Thus two particles can always be recon-
structed, after perturbation. If c = 1

2
the critical sparsity value approximately equals 4 for

arbitrary d. This is the best achievable bound, which is obviously useless for application. For
k = 3 it can be shown that the probability of correct recovery via the perturbed matrix A2

d is

1−
2 · 4 ·

(
d
2

)(
d
3

)
+ 4 ·

(
d
3

)2(
d3

3

) =
d2 + 6d− 10

3(d2 − 2)

d→∞−−−→ 1/3 .

We mention that the expected relative values of NR and NC do not vary much with different
two camera arrangements. This highly pessimistic results can be explained by the fact that
there is no expander with constant left degree ` less than 3.

6. NUMERICAL EXPERIMENTS AND DISCUSSION

In this section we empirically investigate bounds on the required sparsity that guarantee
unique nonnegative or binary k-sparse solutions.

6.1. Reduced Systems versus Analytical Sparsity Thresholds. The workhorse of the previ-
ous theoretical average case performance analysis of the discrete tomography matrix from (4.1)
is the derivation of the expected number of nonzero rowsNR(k) induced by the k-sparse vector
along with the number NC(k) of ”active” cells which cannot be empty. This can be done also
empirically, see Fig. 10, left, for the 2D case and right, for the 3D case. To generate the figures
we varied k ∈ {1, 2, · · · , 2000} and d ∈ {10, 11, · · · , 100} in 2D and k ∈ {1, 2, · · · , 2000}
and d ∈ {10, 11, · · · , 100} in 3D, respectively, and generated for each point (k, d) 500 problem
instances. The plots showNR(k, d)/NC(k, d) along with the curves: kδ (5.25a) for unperturbed
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FIGURE 10. The contourplots of the average fraction of the reduced systems as
a function of the resolution parameter d and the sparsity parameter k. Left: In
agreement with the results of Section 5.5, the plots for the 2D case show that
level lines of NR(k, d)/NC(k, d) are constant with varying d. Right: In 3D the
situation dramatically changes. Higher sparsity values are allowed for increas-
ing values of d, as the derived threshold curves show. Below the blue curve kδ
(5.25a) reconstruction for unperturbed systems is guaranteed with high probabil-
ity. Below the dashed red curve kcrit (5.24) reduced systems are overdetermined.
For points below the solid red curve kmax (5.27) reconstruction is guaranteed for
perturbed systems. Finally, problem instances under the green curve kopt (6.1)
could be recovered if the reduced matrices would follow a symmetrical distri-
bution with respect to the origin.

matrices A, kcrit (5.24) resulting in overdetermined reduced systems, kmax (5.27) for underde-
termined perturbed matrices A, and kopt which solves

NR(kopt) = 0.5NC(kopt) . (6.1)

6.2. Empirical Phase Transitions. We further concentrate on the 3D case. In analogy to [10]
we assess the so called phase transition ρ as a function of d, which is reciprocally proportional
to the undersampling ratio m

n
∈ (0, 1). We consider d ∈ {10, 11, . . . , 100}, the corresponding

matrix A3
d ∈ R3d2×d3 from (4.1) and its perturbed version Ã and the sparsity as a fraction of d2,

k = ρd2, for ρ ∈ (0, 1).
This phase transition ρ(d) indicates the necessary relative sparsity to recover a k-sparse solu-

tion with overwhelming probability. More precisely, if ‖x‖0 ≤ ρ(d) · d2, then with overwhelm-
ing probability a random k-sparse nonnegative (or binary) vector x∗ is the unique solution in
F+ := {x : Ax = Ax∗, x ≥ 0} or F0,1 := {x : Ax = Ax∗, x ∈ [0, 1]n}, respectively. Unique-
ness can be ”verified” by minimizing and maximizing the same objective f>x over F+ or F0,1,
respectively. If the minimizers coincide for several random vectors f we claim uniqueness. As
shown in Fig. 12 the threshold for a unique nonnegative solution and a unique 0/1-bounded
solution are quite close.

To generate the success and failure transition plots we generated A according to (4.1) and
Ã by slightly perturbing its entries and varying d ∈ {10, 11, . . . , 100} Ã has the same sparsity
structure as A, but random entries drawn from the standard uniform distribution on the open
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interval (0.9, 1.1). We have tried different perturbation levels, all leading to similar results.
Thus we adopted this interval for all presented results.

Then for ρ ∈ [0, 1] a ρd2-sparse nonnegative or binary vector was generated to compute
the right hand side measurement vector and for each (d, ρ)-point 50 random problem instances
were generated. A threshold-effect is clearly visible in all figures exhibiting parameter regions
where the probability of exact reconstruction is close to one and it is much stronger for the per-
turbed systems. The results are in excellent agreement with the derived analytical thresholds.
We refer to the figure captions for detailed explanations. Finally, we refer to the summary in
Figure 11 for the computed sharp sparsity thresholds, which are in excellent agreement with
our numerical experiments.

FIGURE 11. Relative critical upper bound sparsity values k(d) in the practi-
cal relevant domain d ∈ (500, 1500) that guarantee unique recovery of k-sparse
vectors x on average with high probability. From bottom to top: kδ (5.25a)
for unperturbed matrices A (blue line), kcrit (5.24) resulting in overdetermined
reduced systems (dashed red line), kmax (5.27) and k̃max (5.26) for underdeter-
mined perturbed matricesA (solid red and pink line), and ideal random measure-
ment matrices kopt (green line). The thin black line depicts the particle density
used by engineers in practice, while the black spot corresponds to the typical
resolution parameter d = 1024. The results demonstrate that specific slight ran-
dom perturbations of the TomoPIV measurement matrix considerably boost the
expected reconstruction performance by at least 150%.

7. CONCLUSIONS

The main contribution of this work is the transfer of recent results on compressive sensing
via expander graphs with bad expansion properties to the discrete tomography problem. In
particular, we consider a sparse binary measurement matrix, which encodes the incidence re-
lation between projection rays and image discretization cells, along with its slightly perturbed
counterpart. While the expected expansion of the underlying graph does not change with per-
turbation, the recovery performance can be boosted significantly. We investigate the average
performance in recovery of exact sparse nonnegative signals by analyzing the properties of re-
duced systems obtained by eliminating zero measurements and related redundant discretization
cells. We compute sharp sparsity thresholds, such that the maximal sparsity can be determined
precisely for both perturbed and unperturbed scenarios. Our theoretical analysis suggests that
a similar procedure can be applied to different geometries.
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FIGURE 12. Left: Recovery via the unperturbed matrix A3
d (blue curves),

d ∈ {10, 20, 30} (from top to down) versus the perturbed counterpart (red
curves). The dash-dot line depicts the empirical probability (500 trials) that
reduced systems are overdetermined and have full rank. The solid line (blue:
unperturbed, red: perturbed) shows the probability that a k-sparse nonnegative
vector is unique. The dashed curve shows the probability that a k-sparse binary
solution is the unique solution of in [0, 1]n. Additional information like binarity
gives only a slight performance boost. The curve kδ (5.25a) correctly predicts
that 18 (d = 10), 48 (d = 20), and 85 (d = 30) particle are reconstructed with
high probability via the unperturbed systems and 66 (d = 10), 181 (d = 20),
328 (d = 30) particles, via the perturbed systems according to kmax (5.27).
However, 105 (d = 10), 241 (d = 20), 408 (d = 30), by k̃max from (5.26)
are more accurate. Division by three does not seem to be necessary. Right:
Empirical probability obtained from 10000 trials that k random columns of the
unperturbed matrix (solid black line) or of the perturbed matrix (dashed black
line) are linearly independent.
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FIGURE 13. Left: Success and failure empirical phase transitions for unper-
turbed and perturbed systems right. Top: Probability that the reduced matrices
are overdetermined and of full rank, along (right) with the estimated relative
critical sparsity level kkrit (dashed red line) which induces overdetermined re-
duced matrices. Middle: Probability of uniqueness of a k = ρd2 sparse nonneg-
ative vector. Bottom: Probability of uniqueness in [0, 1]n of a k = ρd2 sparse
binary vector. The blue curve depicts again kδ (5.25a), the dashed red curve
kcrit (5.24), the solid red curve kmax (5.27), k̃max (5.27) and the green curve
kopt (6.1). In case of the perturbed matrix Ã exact recovery is possible beyond
overdetermined reduced matrices. Moreover k̃max follows most accurately the
empirical phase transition for perturbed systems.
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