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1 Introduction

The mixed complementarity problem, MCP for short, is one of the fundamental prob-
lems in optimization. The theoretical background and many numerical methods for the
solution of this problem are described in the recent books [8, 9] by Facchinei and Pang.
Other books dealing, in particular, with the special case of a complementarity problem,
include [4, 16, 19]. Several important applications of MCPs may be found in the survey
article [12] by Ferris and Pang.

The most convenient way to formulate an MCP is via a variational inequality: Given
a continuously differentiable function F : Rn → Rn and a nonempty, closed and convex
set X ⊆ Rn, the variational inequality problem consists in finding a point x∗ ∈ X such
that

F (x∗)T (x− x∗) ≥ 0 ∀x ∈ X.

If the feasible set X is a box of the form X = [l, u] with lower bounds l = (l1, . . . , ln)T

and upper bounds u = (u1, . . . , un)T satisfying −∞ ≤ li < ui ≤ +∞ for all i ∈
{1, . . . , n}, we obtain the mixed complementarity problem. Writing down the corre-
sponding KKT optimality conditions (see [8] for further details), it is easy to see that
x∗ ∈ [l, u] is a solution of MCP if and only if exactly one of the following conditions
hold:

x∗
i = li and Fi(x

∗) > 0,

x∗
i = ui and Fi(x

∗) < 0,

x∗
i ∈ [li, ui] and Fi(x

∗) = 0.

A further reformulation of these conditions will be given in Section 2 where we review
the basic ideas of our approach.

Commercial software for the solution of MCPs is available: There is a solver called
MILES by Rutherford [20] and the very successful PATH code by Dirkse and Ferris [6],
see also [11, 10] for some later versions. Both codes are based on the Josephy-Newton
idea, combined with many enhancements in order to improve the overall performance.
A comparison of these codes with a number of other algorithms may be found in the
paper [2] by Billups, Dirkse, and Ferris.

In this paper, we present the main ideas of a relatively simple MATLAB program
called LMMCP for the solution of MCPs. This program is the outcome of the authors’
two recent papers [17, 18] and combines some ideas from these two related works.
Basically, the method uses a nonsmooth reformulation of the mixed complementarity
problem as an overdetermined system of equations (or a nonlinear least squares problem
with zero residual) and applies a (projected) Levenberg-Marquardt-type approach to
this reformulation of the original MCP. The method has a strong theoretical background
which, however, is not the main focus of this manuscript.

Here we want to describe the basic idea of our MATLAB solver LMMCP and we
give some details regarding the choice of certain parameters that the reader might want
to change in order to optimize the code for his particular example. The main ideas
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and ingredients of the LMMCP program are therefore given in Section 2, whereas the
details regarding some of its parameters are presented in Section 3. A summary of
the numerical results obtained by LMMCP being applied to the MCPLIB test problem
collection are given in Section 4, and we close with some final remarks in Section 5.

2 Basic Idea of LMMCP

We first recall a reformulation of the MCP that was used in [17, 18] and then present
the main conceptual ingredients of the LMMCP code.

In order give the reformulation of MCPs, let us introduce the following partition of
the index set I := {1, . . . , n}:

Il := {i ∈ I | −∞ < li < ui = ∞},
Iu := {i ∈ I | −∞ = li < ui < ∞},
Ilu := {i ∈ I | −∞ < li < ui < ∞},
If := {i ∈ I | −∞ = li < ui = ∞}.

Hence the indices l, u, and lu indice which bounds are finite, where If is the set of free
variables xi where both the lower bounds li and the upper bounds ui are infinite.

Furthermore, let φ : R2 → R denote the Fischer-Burmeister function

φ(a, b) :=
√

a2 + b2 − a− b,

which has the interesting property that

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0, (1)

see [13]. We now define the operator Φ : Rn → R2n componentwise as follows (i =
1, . . . , n):

Φi(x) :=


λφ(xi − li, Fi(x)) if i ∈ Il,

−λφ(ui − xi,−Fi(x)) if i ∈ Iu,

λφ(xi − li, φ(ui − xi,−Fi(x))) if i ∈ Ilu,

−λFi(x) if i ∈ If ,

Φn+i(x) :=


(1− λ)φ+(xi − li, Fi(x)) if i ∈ Il,

(1− λ)φ+(ui − xi,−Fi(x)) if i ∈ Iu,

(1− λ)(φ+(xi − li, Fi(x)) + φ+(ui − xi,−Fi(x))) if i ∈ Ilu,

−(1− λ)Fi(x) if i ∈ If .

Then it was noted in [17] that the overdetermined system of equations

Φ(x) = 0 (2)
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is equivalent to the MCP. Obviously, the same holds for the box constrained reformu-
lation

Φ(x) = 0, x ∈ [l, u] (3)

which is the basis of the method from [18]. Note that we can use any function φ with
the property (1) in order to get an unconstrained or box constrained reformulation of
the MCP. In the moment, however, we use the Fischer-Burmeister function for φ in our
implementation. An interesting consequence of using the Fischer-Burmeister function
is the fact that the corresponding merit function

Ψ(x) :=
1

2
‖Φ(x)‖2 (4)

is continuously differentiable although Φ itself is nonsmooth.
Basically, the LMMCP code consists of two phases: Phase I is a preprocessor, and

Phase II contains the main algorithm. We give some more details in the following:

Phase I: In this preprocessing phase, we use some iterations of the local projected
Levenberg-Marquardt method from [18] which is based on the constrained reformulation
(3). By default, at most 20 iterations are allowed in this preprocessing phase. There
is no globalization used in this phase. Nevertheless, according to our experience, this
method has a very good behaviour, and most problems will actually be solved in this
phase, especially those examples that are viewed as being simple problems. If we are
not able to solve a problem in this phase, we switch to Phase II.

Phase II: This is the main program using the Levenberg-Marquardt method from [17]
with a line search globalization based on the unconstrained reformulation (2). This
phase is started with the original starting point x0. We use a nonmonotone line search
(see [14]) together with a watchdog stabilization technique (see [15]), i.e., if the best
function value found so far has not been reduced sufficiently within a fixed number of
iterations, we restart from that point using a monotone line search.

The computation of our search direction requires the evaluation of a generalized
Jacobian (see [3]) of the nonsmooth operator Φ. To this end, we use the strategy
described in [1] which, in turn, in based on the one given in [5] for the standard nonlinear
complementarity problems. If the function φ is replaced by another function having the
property (1), however, the evaluation of this generalized Jacobian has to be modified,
too.

3 M-Files and Important Parameters

Here we shortly describe the structure of the program and give the default values of
some parameters and discuss the role of these parameters.
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The MATLAB solver LMMCP can be downloaded from the first author’s homepage
using the URL

http://www.mathematik.uni-wuerzburg.de/~kanzow/

and clicking on the software button. Then there is a file called

LMMCP.zip.

Downloading and unzipping this file will result in the following list of M-files:

LMMCP V10.m

LMMCP MCPLIB V10.m

Phi3MCPPFB.m

DPhi3MCPPFB.m

josephy.m

Djosephy.m

Sjosephy.m

The main program is contained in LMMCP V10.m. The related code LMMCP MCPLIB V10.m

is almost a copy of this program except that it contains some special lines for solving
test examples from the MCPLIB test problem collection, see [7]. Depending on the local
installation of this collection, however, one has to change a few lines containing the path
for this particular collection of test examples. These two main programs call the two
M-files Phi3MCPPFB.m and DPhi3MCPPFB.m, where the former is used to evaluate the
function Φ at the current iterate, whereas the latter calculates a generalized Jacobian
of Φ at the current point. The M-files josephy, Djosephy, and Sjosephy contain the
data of a simple example and provide the function value F (x), the Jacobian F ′(x), and
a starting point x0 together with the lower and upper bounds li, ui, respectively. Any
other example that should be solved using LMMCP V10.m needs similar M-files, so that
the user has to provide, for each test problem, three MATLAB-files.

The program can be tested by typing LMMCP V10.m in the MATLAB environment.
Then the program will ask for the name of an example. Typing josephy, for example,
will result in the following output:

k Psi(x) || DPsi(x) || stepsize

====================================================================

********************* Output at starting point *********************

0 0.022810535808 2.1113411968

************************** Preprocessor ****************************

1 0.000017271137 0.0481257223 1.0000000

2 0.000000000030 0.0000630524 1.0000000

This output shows that the program was able to solve this problem in just 2 iterations
(both in Phase I). The four columns have the the following (obvious) meanings: The
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first column gives the current iteration counter, the second column the function value
Ψ(xk) at the current iterate, the third column provides the norm ‖∇Ψ(xk)‖ at the point
xk, and the last column give the stepsize tk. Note that this stepsize is always equal to
one in Phase I, so this column becomes important only in Phase II where this stepsize
is typically different from one.

Typing ’x’ in the MATLAB environment gives the approximate solution of the
problem that was solved before. Especially for the previous josephy example, we get
the following vector:

>> x

x =

1.2247

0

0.0000

0.5000

We next give some details regarding some of the more important parameters in the
LMMCP code.

Choice of λ: The mapping Φ and, therefore, both reformulations (2) and (3) of the
MCP depends on a parameter λ that is called lambda1 is our code. Theoretically, this
parameter can be any number from the interval (0, 1] (note that zero is excluded here).
Numerically, we found 0.1 to be a good choice, and therefore we use the value

lambda1 = 0.1

by default. However, the choice of this parameter usually has a great influence on the
numerical behaviour of the overall algorithm, and a different value of this parameter
might give significantly better results for particular problems. We suggest to change
this parameter first whenever our LMMCP code is not able to solve a problem.

Switch from Phase I to Phase II: Basically, there are two parameters that control the
switch from Phase I to Phase II of our algorithm. They are called preprocess and
presteps. By default, we use

preprocess = 1 and presteps = 20.

Setting preprocess=1 simply says that we want to apply our preprocessor from Phase
I first. If we assign any other number to this parameter, then our LMMCP solver
immediately goes to the main program in Phase II. Moreover, presteps=20 means that
we allow at most 20 iterations in Phase I. Thereafter we switch to Phase II. Changing
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the parameter presteps sometimes gives completely different results.

Termination parameters: There are mainly three parameters that are used to terminate
the iteration, namely eps2, kmax, and tmin, whose default values are

eps2 = 10−10, kmax = 500, tmin = 10−12.

If the current iterate xk gives a function value Ψ(xk) of less than eps2, then we stop our
iteration successfully with an approximate solution. This parameter might be changed
if a higher or lower accuracy is required. The parameter kmax is used as the maximum
number of iterations that is allowed to be taken by our LMMCP algorithm (note that
we count the iterations from Phase I and Phase II together). In general, it seems that
our method is not able to solve a problem in more than 500 iterations if it was not able
to solve it within the first 500 steps, so we do not suggest to change this parameter.
Finally, the parameter tmin is a safeguard for the stepsize tk used in Phase II: If tk
becomes less than tmin, we terminate with an error message. Changing the default
value of tmin slightly usually does not change much regarding the overall performance
of the method.

Choice of some stepsize parameters: There are a several parameters that play an im-
portant role for our choice of a suitable stepsize tk in Phase II. Here we only mention
the parameters m, kwatch, and watchdog, whose default values are

m = 10, kwatch = 20, watchdog = 1.

The parameter m tells the nonmonotone line search (Armijo) rule to use the last ten
function values in order to decide whether or not to accept the new iterate. The
nonmonotone line search is combined with a watchdog strategy. This means that we
go back to the best point found so far if we are not able to get a significant reduction
of the function value within kwatch steps. Note that the value of kwatch should not
be smaller than the value of m. Furthermore, if the watchdog strategy should not be
used, simply set the parameter watchdog to any number different from one.

There are some other parameters used in our LMMCP code, in particular, there are
some parameters regarding the choice of a Levenberg-Marquardt parameter and some
parameters for an update of an implicitly used trust-region radius in Phase I. However,
we do not give the details here, the interested reader may have a look into the program.

4 Numerical Results

In this section, we shortly summarize the numerical results that we obtained using our
LMMCP code being applied to the MCPLIB test problem collection, see [7]. We report
our results in two tables: Table 1 contains the results for the smaller problems, and
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Table 2 gives the corresponding results for the larger problems. For each test example,
we give the name of the problem, its dimension n, the function value Ψ(x0) at the initial
iterate x0, the number Nit of iterations the method used until termination, the function
value Ψ(xf ) at the final iterate xf , and the norm ‖∇Ψ(xf )‖ of the gradient of Ψ at xf .

Table 1: Numerical results for MCPLIB test problems

Problem Dim Ψ(x0) Nit Ψ(xf ) ‖∇Ψ(xf )‖
badfree 5 4.6000e–01 4 1.5896e–14 2.5216e–08
bertsekas 15 3.9360e–03 14 3.9695e–15 3.6057e–07
billups 1 3.4512e–05 50 2.2044e–12 7.6273e–06
choi 13 7.7090e–03 5 2.6496e–16 9.3824e–10
colvdual 20 5.4880e+01 17 1.6696e–11 9.0001e–05
colvnlp 15 6.2076e+01 6 4.8859e–16 5.1459e–08
cycle 1 5.1738e+01 4 8.9220e–12 4.2242e–07
degen 2 1.0000e–01 4 3.1519e–17 7.9396e–10
duopoly 63 2.1325e+02 — — —
ehl k40 41 1.0422e+04 12 1.5114e–13 1.8418e–04
ehl k60 61 3.7975e+04 15 3.1039e–11 3.9762e–04
ehl k80 81 9.3630e+04 14 9.4744e–13 3.8724e–03
ehl kost 101 1.8790e+05 17 5.6519e–12 1.5125e–02
electric 158 2.6097e+08 48 4.3937e–11 7.5483e–02
explcp 16 3.2000e–01 4 7.4076e–14 3.8491e–08
forcebsm 184 3.9442e+03 259 3.0957e–12 2.4894e–07
forcedsa 186 3.9487e+03 45 2.9715e–16 2.4378e–09
freebert 15 1.5098e+04 13 1.9019e–13 2.7216e–06
gafni 5 1.3004e+03 10 6.4207e–13 2.8455e–05
games 16 6.0066e+01 13 1.2298e–12 1.6448e–05
hanskoop 14 1.1860e+02 14 5.6144e–13 1.6009e–07
hydroc06 29 1.7666e+05 7 7.7161e–18 1.3727e–05
hydroc20 99 4.1044e+05 10 2.6114e–15 1.2675e–04
jel 6 9.5612e+02 8 5.3611e–12 2.9118e–05
josephy 4 2.2811e–02 2 2.9891e–11 6.3052e–05
kojshin 4 2.2811e–02 2 3.0042e–11 6.3208e–05
mathinum 3 6.2154e+02 5 4.5040e–17 2.1547e–08
mathisum 4 5.2165e+00 8 2.1995e–16 1.5101e–08
methan08 31 6.4638e+06 5 6.3205e–19 2.4385e–07
nash 10 5.4263e+02 4 2.3546e–19 7.3984e–09
ne-hard 3 1.1559e+04 19 1.8429e–11 7.7746e–05
pgvon106 106 1.5367e+02 41 6.1101e–12 8.9650e–07
pies 42 5.2678e+08 46 3.3569e–11 1.4099e-03
powell 16 6.8071e–04 4 5.6591e–11 4.0948e–06
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Table 1: Numerical results for MCPLIB test prob-
lems (continued)

Problem Dim Ψ(x0) Nit Ψ(xf ) ‖∇Ψ(xf )‖
powell mcp 8 9.3167e+01 2 2.7283e–13 5.4316e–06
qp 4 3.3000e+00 2 1.6034e–31 7.5011e–16
scarfanum 13 6.9949e–05 3 3.6051e–12 2.4848e–06
scarfasum 14 6.9949e–05 3 3.6049e–12 1.9089e–06
scarfbsum 40 1.1232e+02 46 9.2880e–11 2.8655e–03
shubik 45 1.6389e–01 266 9.5806e–13 8.2964e–03
simple-ex 17 9.5616e+00 73 7.3173e–13 9.4441e–07
simple-red 13 2.2508e+02 10 2.1736e–11 3.1994e–06
sppe 27 1.2169e+02 3 4.2516e–11 1.2021e–04
tinloi 146 4.0018e–01 6 7.6395e–12 4.2206e–04
tobin 42 3.2365e+00 2 1.4746e–14 9.5573e–06

Table 2: Numerical results for MCPLIB test problems

Problem Dim Ψ(x0) Nit Ψ(xf ) ‖∇Ψ(xf )‖
bert oc 5000 5.1294e+01 5 8.4889e–14 4.2054e–10
bratu 5625 7.8870e+00 12 1.7099e–14 1.5884e–08
bishop 1645 2.1577e+11 — — —
lincont 419 3.9560e+03 41 5.3360e–18 9.6787e–07
obstacle 2500 3.3714e–04 6 8.6923e–11 1.6423e–06
opt cont 288 8.6940e+02 5 3.1396e–18 1.1722e–08
opt cont31 1024 2.4359e+02 5 6.0898e–16 1.7810e–07
opt cont127 4096 7.8674e+01 5 2.2750e–18 2.9798e–10
opt cont255 8192 5.1845e+01 5 8.1394e–12 4.8056e–07
opt cont511 16384 3.8488e+01 6 1.7258e–17 1.5287e–08
trafelas 2904 5.1250e+03 163 6.5673e–17 1.5852e–09

The previous two tables indicate that LMMCP is able to solve almost all problems
including a number of very difficult ones like electric, forcebsm, forcedsa, ne-hard,
pgvon106, simple-ex, and lincont. We have failures on two problems only, namely
duopoly and bishop which, however, can be solved with other parameter settings.

5 Conclusions

We gave some details of our implementation of LMMCP, a MATLAB program for the
solution of mixed complementarity programs based on a nonsmooth reformulation as
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an overdetermined system of equations. We believe that this is a very robust solver,
however, the current implementation is version 1.0, and there are a lot of possibilities
for improvements. For example, we may replace the Fischer-Burmeister function φ
by another function with similar properties, or we may use automatic restarts when it
seems that our program is not able to solve a certain test examples. These modifications
will certainly be incorporated in future versions of this program.
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