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Abstract

We investigate a constrained version of simultaneous iterative recon-
struction techniques (SIRT) from the general viewpoint of projected gra-
dient methods. This connection enable us to assess the computational
merit of this algorithm class. We borrow a leaf from numerical optimiza-
tion to cope with the slow convergence of projected gradient methods and
propose an acceleration procedure based on the spectral gradient choice
of steplength along with a nonmonotone strategy. We compare these
schemes and present numerical experiments on some algebraic image re-
construction models with sparsity constraints, with particular attention
to tomographic particle image reconstruction. The performance of both
constrained SIRT and nonmonotone spectral projected gradient approach
is illustrated for several constraining strategies.

1 Introduction

Successfully employed at the solution of huge and sparse systems of linear alge-
braic equations which arise in many application areas (most notably discrete
models of computerized tomography) Simultaneous Iterative Reconstruction
Techniques (SIRT) [10, 9] continue to receive great attention due to their low
memory requirements and extreme simplicity. The SIRT are inherently par-
allel schemes which after each (possibly relaxed) reflection or projection of
a current approximation with respect to each hyperplan (described by each
equation of the linear algebraic system) take a convex combination of these
intermediate points as the next iterate. The convergence to a (weighted) least-
squares solution is guaranteed even in case of inconsistency. In order to deal
with limited-data linear inverse problems or with noise corrupted data a reg-
ularization technique is required. Regularization techniques try, as much as
possible, to take advantage of prior knowledge one may have about the nature



of the ”true” solution. This can be modeled by assuming that the solution
is contained in a (compact) set B. If this set is convex and exhibits a simple
structure one may (orthogonally) project the iterates generated by SIRT onto
the range within the components of an acceptable reconstruction vector must
lie. These projection techniques traditionally termed as constraining strategies
were generalized by the authors in [16] and applied to the sequential recon-
struction technique ART [14]. Inter alia we show in the present work that
such constraining strategies can be applied also to SIRT, see Section 3.

However, the approach in this paper is tailored to the case when the ob-
ject (image I) to be reconstructed can be represented by a sparse expansion,
i.e., when I can be represented by a series expansion with respect to a basis
with only a small number of nonzero coefficients x. Moreover this number,
say k, is device-controlled and thus known a priori in the application area
in focus. Hence B may be written as the union of all subsets of R

n with at
most k nonzero components, thus a union of linear subspaces. Together with
the nonconvexity of such B, the number of such subspaces, which grows ex-
ponentially with n and k, make ”projection” onto B unrealistic. Fortunately
this complicated set B can be replaced by a nice convex set, e.g. a ℓ1-ball or
even the positive orthant, provided that the underlying solution is sufficiently
sparse and positive. Successive orthogonal projections on this ”new” feasible
region, which are now nonexpensive operations, lend themselves to constrain-
ing strategies, see Section 3.2, and constrained versions of SIRT emerge as
classical gradient projection methods, see Section 4.

It is well known that these methods may exhibit very slow convergence
if not combined with appropriate steplength selections. In order to accelerate
the projected gradient method we exploit the spectral steplength introduced
by Barzilai and Borwein in [2] for the unconstrained case. We consider a
nonmonotone spectral projected gradient method developed in [4], see Sec-
tion 4.1, and present extensive numerical experiments in Section 5 on image
reconstruction problems motivated by the work [13].

The authors introduced a new 3D technique, called Tomographic Particle
Image Velocimetry (TomoPIV) for imaging turbulent fluids with high speed
cameras. The technique is based on the instantaneous reconstructions of par-
ticle volume functions from few and simultaneous projections (2D images) of
the tracer particles within the fluid. Since the relationship between observable
2D images and interesting 3D images is (approximately) linear, as detailed in
[13, 19], the situation can be modeled mathematically by

Ax = b . (1)

The projection matrix A is underdetermined since, in contrast to medical
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imaging, the object to be reconstructed is acquired under a tiny range of angles,
i.e. the image to be reconstructed is highly undersampled. As a consequence,
the reconstruction problem becomes severely ill-posed and a regularization
approach has to be applied to estimate the weights x from the recorded 2D
images.

2 Regularization via Sparsity Maximization,

ℓ1-Minimization or Positivity Constraints

The original 3D light intensity distribution I can be well approximated by
only a very small number of active basis functions, see [19], relative to the
number of possible particle positions in a 3D domain, since the particles are
sparsely spread in the 3D volume. This leads us to the following regularization
principle: find an (approximative) solution of (1) with as many components
equal to zero as possible, i.e.,

min ‖x‖0 s.t. Ax = b , (2)

where ‖x‖0 counts the nonzero components in x ∈ R
n. In general the search for

the sparsest solution is intractable (NP-hard), however. The newly founded
theory of Compressed Sensing [6, 7] showed that one can compute via ℓ1-
minimization the sparsest solution for underdetermined systems of equations
provided certain properties [8] are satisfied, which unfortunately do not hold
for our particular scenario. The authors in [20] showed empirically that there
are thresholds on sparsity (i.e. density of the particles) depending on the
numbers of measurements (recording pixel in the CCD arrays) which resemble
the known thresholds for the idealized mathematical setups. ℓ1-Minimization
methods yield (near) perfect reconstructions below these sparsity thresholds
and above they fail with high probability, similar to the results of Candès and
Tao [7]. These authors showed that there is a constant C such that for a signal
x̃ with at most k nonzero entries, b ≈ Ax̃ and m ≥ Ck log(n

k ), the solution of

min ‖x‖1 s.t. Ax = b (3)

will be exactly the original signal x̃ with overwhelming probability, provided
the rows of A are randomly chosen Gaussian distributed vectors, which guar-
antees the favorable properties of A, like incoherence, see [8]. Even for coherent
matrices A ℓ1-minimization seems to lead to promising results, see [20].

When the sparsity parameter k of the solution of (2) is known a priori it
is possible to consider instead of problem (2) and (3) the least-squares problem

min
1

2
‖Ax− b‖2 s.t. ‖x‖0 ≤ k (4)
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imposing a sparsity constraint. For consistent systems Ax = b, in particu-
lar when A is a full rank underdetermined matrix, problems (2) and (4) are.
As already discussed before the nonconvexity and the structure of the con-
straint set make problem (4) a difficult combinatorial problem. Similar to the
developments in the compressed sensing literature a relaxed model may be
considered

min
1

2
‖Ax− b‖2 s.t. ‖x‖1 ≤ r , (5)

known as the LASSO problem in the statistical community. Again, problems
(4) and (5) are equivalent, under an appropriate correspondence of parame-
ters k and r and certain properties of A. Moreover, problem (5) is tractable
since the feasible set is the convex ℓ1-ball of radius r and can be recast as an
quadratic program with linear constraints.

An even simpler regularization approach, much less perceived in the
sparse regression literature, is a least-squares fit subject to simple positive
constraints, i.e.,

min
1

2
‖Ax− b‖2 s.t. x ≥ 0 , (6)

if the original solution is known to be sparse and positive. It was shown in [19]
that one can reduce the original linear system Ax = b by eliminating the i-th
row of A corresponding to a zero measurement bi = 0 as well as all columns in
A whose i-th entries are positive, provided that the entries in b and A are non-
negative. If the reduced system has an overdetermined coefficient matrix of
full rank then the original (positive) solution must be the unique positive solu-
tion of the underdetermined system. Even beyond the thresholds on sparsity
of an original positive solution generating such an ”overdetermined” reduc-
tion a sufficiently sparse positive solution might be unique, provided that A
satisfies some (difficult to check) properties, see [23]. Additionally, it can be
shown that the unique positive solution of an underdetermined system is also
the solution of minimal ℓ1 norm.

Combining (5) and (6) we obtain

min
1

2
‖Ax− b‖2 s.t. 1T x ≤ r, x ≥ 0 , (7)

which is a quadratic problem subject to simplex constraints. On the other
hand problem (3) can be solved by linear programming. Nevertheless, general-
purpose LP and QP solvers involve solution of full n × n linear systems, an
operation costing order O(n3) flops. Therefore, there is a need to find a more
efficient algorithm that requires only matrix-vector products involving A and
AT and therefore adapts to the difficulty that the matrix A is huge and not
explicitly available.
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3 Constrained Simultaneous Iterative Reconstruc-

tion Techniques

3.1 Simultaneous Iterative Reconstruction Techniques

The well-known Algebraic Reconstruction Techniques (ART) [14], for solving
least-squares problems, orthogonally projects the current approximation xk

onto the hyperplanes Hi = {x|AT
i,•x = bi}, i = 1, . . . ,m , not simultaneously

but sequentially. The projection onto the n-th hyperplane is taken as the
new approximation xk+1, and the process is repeated. Such a method can
converge only if the right-hand side b lies in the span of the matrix. For
perturbed right-hand sides one may therefore not expect convergence.

Simultaneous Iterative Reconstruction Techniques (SIRT) are designed to
give convergence in this case. They distinguish themselves from ART methods
in that they do not update the iterated vector after each equation, but after
an entire sweep through all the equations, and thus, during one sweep, they
use the same residual vector for each equation.

Given the current iterate xk, it is first projected on all hyperplans Hi and
then the next iterate is

xk+1 = xk + αk

(
m∑

i=1

ωiΠHi
(xk)− xk

)
, (8)

where ωi are fixed positive weights summing up to 1, αk ∈ [ε, 2 − ε] is a
relaxation parameter, with ε > 0 fixed but arbitrary tiny and PHi

is the
orthogonal projection onto the i-th hyperplan Hi. In short, xk+1 is a weighted
average of relaxed projections of xk.

If the relaxation parameters satisfy αk = 2 for all k we obtain Cimmino’s
method of simultaneous reflections [10]. Cimmino takes the weighted average
of all reflections yk,i := (2ΠHi

− I)xk of xk with respect to all hyperplanes Hi.
In view of the explicit form of the projection onto a hyperplan equation (8)
can be written in matrix notation

xk+1 = xk − αkA
T D(Axk − b) , (9)

where D is a positive definite diagonal matrix defined by

D := diag

(
ω1

‖A1,•‖2
, . . . ,

ωm

‖Am,•‖2

)
. (10)

SIRT (8) iteratively approximates a weighted least-squares solution

min ‖Ax− b‖D , (11)
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even in the inconsistent case, see e.g. the result due to Combettes [11, Th. 4].
When the weights in (8) are given by

ωi =
‖Ai,•‖

2

∑m
j=1 ‖Aj,•‖2

(12)

the sequence {xk}k always converges (also in the inconsistent case) to a least
squares solution. We can replace the fixed weights ωi in (8) by ωk

i with ωk
i >

0 and
∑m

i=1 ωk
i = 1 for all k and still have a convergent algorithm in the

consistent case, i.e. when Ax = b has an exact solution, see [1, Th. 1].
Defining the matrices T := I − αkA

T DA and R := αkA
T D with D from

equation (10) we can rewrite the iteration in (8) as

xk+1 = Txk + Rb . (13)

It turns out that R(AT ) is an invariant subspace on which operator T is
contractive and Rb ∈ R(AT ) for every right-hand side b. Thus (linear) con-
vergence of the sequence {xk}k towards an x∗ ∈ R(AT ) can be obtained by
Banach-like arguments, provided that x0 ∈ R(AT ). Denoting T̃ = T |R(AT ) we
obtain the following convergence result, see [21] for a proof.

Theorem 1 For any initial approximation x0 ∈ R
n, the sequence {xk} gen-

erated by SIRT (13) converges and

lim
k→∞

xk = PN (A)(x
0) + xLS + ∆ with ∆ = (I − T̃ )−1RPN (AT )(b) . (14)

In particular, ∆ = 0 when the system (1) is consistent. Moreover, we have
the a priori estimate

‖xk − x∗‖ ≤
κk

1− κ
‖x0 − x1‖ (15)

and the a posteriori estimate

‖xk+1 − x∗‖ ≤
κ

1− κ
‖xk+1 − xk‖ , (16)

where κ = ‖T̃ ‖ and x∗ be the limit point in (14). In particular, the convergence
rate of sequence {xk}k is linear.

However, the minimum norm solution of Ax = b (in the consistent case)
or of the weighted least-squares problem (11) is in general a dense vector and
may considerably differ from the true sparse solution. As discussed in Section
2 we usually have a priori information about the range within the values of
the solution components must lie, e.g. ‖x‖1 ≤ r etc. This should be exploited
by the iterative method (8).
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3.2 Constraining Strategies

In this section we are interested in techniques able to steer the approximations
xk generated by SIRT in some given set B. In particular we are interested in
the choices B = R

n
+, B = {x | ‖x‖1 ≤ r} =: Bℓ1,r or B = {x | 1T x ≤ r, x ≥

0} =: ∆n,r, compare Section 2.
Such techniques traditionally termed as constraining strategies were in-

vestigated in [16] and applied to ART iterations of the form (13). Following
the authors in [16] we consider a constraining function C : R

n → R
n with a

closed image I(C) ⊂ R
n and the properties

‖C(x)− C(y)‖ ≤ ‖x− y‖ , (17)

if ‖C(x)− C(y)‖ = ‖x− y‖ then C(x)−C(y) = x− y , (18)

if y ∈ I(C) then y = C(y) , (19)

and propose the constrained SIRT

xk+1 = C(Txk + Rb) , (20)

were T and R are defined as in the previous section.
Similar to [16, Th. 3], we obtain the following convergence result for the

constrained SIRT (20).

Theorem 2 Let us suppose that all rows of the matrix A are nonzero, rank(A) ≥
2, the constraining function C satisfies (17) – (19) and the set V defined by

V = {y ∈ I(C), y −∆ ∈ LSS(A, b)} (21)

is nonempty, where ∆ is defined in 2. Then, for any x0 ∈ I(C) the sequence
{xk} generated by (20) converges and its limit belongs to the set V. If the
problem (1) is consistent, then the above limit is one of its constrained solu-
tions.

Orthogonal projections onto convex sets K are constraining strategies,
since ΠK satisfies (17) – (19), compare [21].

3.3 Projections onto the ℓ1-Ball, the Simplex or the Positive

Orthant

While projection onto the positive orthant R
n
+ is simply

[ΠR
n
+
(x)]i = max{xi, 0} , i ∈ {1, . . . , n} , (22)
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projection onto the simplex or the ℓ1-ball is more involved. The next result
shows how we can perform Euclidean projection onto the positive simplex.
See, e.g. [19, 12] for a proof.

Proposition 1 Let x(i) denote the i-th order statistics of x, that is, x(1) ≥
x(2) ≥ · · · ≥ x(n) and denote the positive simplex by ∆n,r := {y |

∑n
i=1 yi =

r, y ≥ 0}. Then

[Π∆n,r(x)]i =

{
1

|I(x)|

(
r −

∑
j∈I(x)(xj − xi)

)
, i ∈ I(x) ,

0, otherwise ,
(23)

where I(x) contains the indexes of the m := |I(x)| largest components of x
such that

∑m
j=1(x(j) − x(i)) < 1.

The next result [21] says that finding the orthogonal projection of a vector
x ∈ R

n onto the ℓ1-ball of radius r can be reduced to the problem of finding
the projection onto the simplex.

Proposition 2 Let y∗ be the (unique) solution of

min
1

2
‖y − |x|‖2 s.t. ‖y‖1 ≤ r, y ≥ 0 , (24)

where |x| denotes the vector of absolute values |x| := (|x1|, . . . , |xn|)
T . Then

sign(x) · |y∗| := (sign(x1)|y
∗
1 |, . . . , sign(xn)|y∗n|)

T solves

min
1

2
‖y − x‖2 s.t. ‖y‖1 ≤ r . (25)

We stress that exact projection onto the ℓ1-ball can also be performed in
O(n) linear time, see [12], by avoiding sorting the vector first.

4 Projected Gradient Method

For the particular choice C = ΠK with K some nonempty closed convex set,
it turns out that iteration (20) is the basic gradient descent iteration with
damping parameter αk,

xk+1 = ΠK(xk − αk∇f(xk)) , (26)

applied to the convex and differentiable function

f(x) =
1

2
‖Ax− b‖2D , (27)
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where ‖x‖D denotes the energy norm 〈x,Dx〉1/2. For K = R
n we obtain SIRT.

Iteration (26) converges if αk < 2
L with L being the Lipschitz constant of

the gradient∇f of f in (27), see [17, Th. 5.1]. Since∇f(x) = AT D(Ax−b), the
Lipschitz constant L is obviously the largest eigenvalue of the matrix AT DA.
A simple upper bound is given by

‖AT DA‖ =

∥∥∥∥∥

m∑

i=1

ωi

Ai,•A
T
i,•

‖Ai,•‖2

∥∥∥∥∥ ≤
m∑

i=1

ωi

∥∥∥∥∥
Ai,•A

T
i,•

‖Ai,•‖2

∥∥∥∥∥
︸ ︷︷ ︸

=1

= 1 . (28)

Hence iteration (26) converges to a solution of

min
x∈K

f(x) (29)

provided that αk ≤ 2 and a solution to (29) exists. When ∇f is Lipschitz
continuous in K with known Lipschitz constant L, the iteration (26) generates
for the every stepsize αk ≤

2
L a sequence in K for which f decreases towards

its minimal value on K. If the stepsize αk in (26) is chosen to be

αk = argminαf(xk − α∇f(xk))

it can be computed explicitly since f is a quadratic function. However it is
not guaranteed that the function value f at xk+1 = ΠK(xk − αk∇f(xk)) will
decrease for this particular αk.

In the safeguard approach proposed by Bertsekas [3, p. 226], we search
from each iterate xk along the negative gradient −∇f(xk), projecting onto K,
and performing a backtracking line search (referred as ”Armijo rule along the
projection arc”) until a sufficient decrease is attained in f . Several trail steps
are projected on the convex set and at each f has to be evaluated, making
this process expansive even if projection is inexpensive, as in the case of simple
positive constraints.

4.1 Spectral Projected Gradient

The method proposed in [4] combines the classical projected gradient method
(26) with the spectral gradient choice of steplength [2] and a nonmonotone
line search strategy [15] to avoid additional trial projections during the one
dimensional search process. The Spectral Projected Gradient (SPG) method
[4] proposed for the minimization of a smooth nonlinear function f subject
to convex constraints calculates at each step an approximation to the Hessian
Hk of f at xk by ηkI based on the secant condition

∇f(xk+1)−∇f(xk) ≈ ηk(x
k+1 − xk) ,
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following Barzilai and Borwein [2].
Algorithms 1 and 2 from [4] describe how to obtain xk+1 and αk in the

constrained case. The algorithms use an integer m ≥ 1; a tiny parameter
αmin > 0; a large parameter αmax > αmin; a sufficient decrease parameter
γ ∈ (0, 1); and safeguarding parameters 0 < σ1 < σ2 < 1. Initially, α0 ∈
[αmin, αmax] is arbitrary.

Algorithm 1 (Spectral Projected Gradient Method - SPG)

(S.0) Choose x0 ∈ K and set k := 0.

(S.1) If ‖ΠK(xk − ∇f(xk)) − xk‖ = 0 is satisfied within the tolerance level:
STOP. Otherwise, continue with (S.2).

(S.2) Compute dk = ΠK(xk − αk∇f(xk)) − xk, λk using the line search algo-
rithm below and xk+1 = xk + λkd

k.
Compute sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk) and βk = 〈sk, yk〉.
If βk ≤ 0 set αk+1 = αmax. Otherwise,

compute αk+1 = min{λmax,max{αmin, 〈sk ,sk〉
βk
}}

(S.3) Increase the iteration counter k ← k + 1 and goto (S.1).

The line search procedure below is based on a safeguarded quadratic interpo-
lation.

Algorithm 2 (Line Search)

(S.2.0) Compute dk = ΠK(xk−αk∇f(xk))−xk, δ = 〈∇f(xk), dk〉 and set λ := 1.

(S.2.1) Set x+ = xk + λdk.

(S.2.2) If
f(x+) ≤ max

0≤j≤{k,m−1}
f(xk−j) + γλδ, (30)

then define λk = λ and goto (S.2.1).
If (30) does not hold define λnew = −1

2λ2δ/(f(x+) − f(xk) − λδ). If
λnew ∈ [σ1, σ2λ] set λ = λnew. Otherwise, compute λ = λ/2 and goto
(S.2.1).

Convergence of SPG method follow directly from the results of Birgin,
Martinez, and Raydan [4].

Theorem 3 [4, Th. 2.2] The sequence of iterates {xk}k generated by the SPG
algorithm 1 is well defined and either terminates at a solution of minx∈K f(x),
or else converges to a constrained minimizer of f at an R-linear rate, provides
such minimizer exists.
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5 Numerical Results

5.1 Test Data

We consider a 2D model inspired by a real-world TomoPIV application, see
for details [19], and stress that 3D models are direct extensions of the present
one. We consider 10 and 20 particles in a 2D volume Ω = [−1

2 , 1
2 ] × [−1

2 , 1
2 ],

see Fig. 1(a) and 3(a). Particle positions were chosen randomly in Ω for
10 particles examples Iex,2 and for Iex,1 randomly but at grid positions, to
avoid discretization errors. Thus, xex,1 corresponding to Iex,1 is a binary
vector in R

4356 having 10 nonzero components. Four 50−pixel cameras are
measuring the 2D volume from angles 45o, 15o,−15o,−45o, according to a fan
beam geometry, see [19, p. 17]. The pixel intensities in the measurement
vector b are computed by integrating the particle image exactly along each
line of sight [19] and perturbing the result according to (31) in Section 5.2.

5.2 General Considerations

We applied the algorithms constrained SIRT (20) from Section 3.2 and the
SPG method (1) from Section 4.1 to the perturbed system Ax = bε , where
bε = b + e and b is obtained by integrating exactly along the pixels line of
sight. The error vector e = e(ε) ∈ R

m is defined by

e(ε) := ε
v

‖v‖
‖b‖ , (31)

where the components of v are chosen at random drawn from a uniform dis-
tribution on the unit interval. We have chosen three different values for ε, i.e.
ε ∈ {0, 0.05, 0.1}. The bigger is ε, the bigger will be ‖∆‖ = ‖A+PN (AT )(b)‖,
see 3.2 and Th. 1 for the constrained SIRT (20).

The constraining function used in all computations was either the orthog-
onal projection onto the positive orthant, i.e. C = ΠR

n
+

from (22), the orthog-
onal projection onto the simplex ∆n,r or the ℓ1-ball of radius r, computed cf.
Section 3.3. In both procedures we sorted the vector v to be projected first
(an O(n log(n)) operation), hence being significantly more involved than just
taking the positive components of v. Exact projection onto the ℓ1-ball can
also be performed in O(n) linear time according to [12].

As a preprocessing step we reduce system Ax = b according to the
methodology described in Section 2. For all considered examples the reduced
coefficient matrices are full-ranked but still underdetermined. Hence, all re-
duced systems (denoted by Arx = br) are consistent. Interestingly, for the
second example or when the data is perturbed (ε ∈ {0.05, 0.1}) there is no
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positive solution that satisfy Arx = br (as well as AT
r Arx = AT

r br) exactly.
This findings we verified by using Farkas’s lemma. For instance to verify that
Ax = b, x ≥ 0 has no solution we solved AT y >= 0, bT y < 0. This situation
is reflected also by the high value of the (relative) normal residual (34) at the
final iterate, compare the results presented in the next section.

Note that xex,1 is the unique positive solution of Ax = bε, for ε = 0, due
to its high enough sparsity, as well the solution of minimal ℓ1-norm. In this
cases, V from (21) consists of only one point for ε = 0 and constrained SIRT
will converge according to Theorem 2 to xex,1 in the noiseless (and consistent)
case. Otherwise, V from (21) will be empty. Constrained SIRT will still
converge to a global optimum of

min
1

2
‖Ax− b‖2 s.t. x ∈ B , (32)

since we have chosen the weights ωi as in (12). Value ‖∆‖ represents the
distance between this limit point and the least-squares solutions set LSS(A, b).

In all computations we have chosen the steplength αk = 2 (closer to the
optimal value 2

L then other values of αk, see Section 4, p. 16) obtaining the
constrained classical Cimmino algorithm.

In all computations we used x0 = 0 as an initial approximation and
terminating if the relative error at the current iterate xk is small enough, i.e.,

‖xk − xS‖

‖xS‖
< 10−3

or if the maximum iteration number is reached, i.e. k ≥ kmax, where kmax =
104mr. Since a ground truth is not available for all considered examples xS is
chosen to be the solution of (32) for B ∈ {Rn

+,∆n,r,Bℓ1,r} and ε = 0 obtained
by recasting (32) as a linearly constrained quadratic program (QP) and solving
it with MOSEK [18]. All radii r are chosen to be the ℓ1-norms of the minimal
ℓ1-norm solutions of Ax = b, (3). Interestingly, all r (approximately) equals
the number of particles even in the case of example Iex,2. Additionally to the
above mentioned criteria we test if

K(xk) = ‖xk −ΠB(xk −∇f(xk))‖∞ < 10−5 . (33)

This criterion is motivated by the fact that K is continuous in x and zero
if and only if xk is optimal for the constrained problem (32) provided B is
convex. A last criterion involves the relative normal residual

‖AT (Axk − b)‖

‖AT b‖
< 10−6 . (34)
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Within the implementation of the SPG method we used exactly the same
termination criteria. In the experiments presented in the next section we chose
the parameters recommended in [5]: m = 10, αmin = 10−3, αmax = 103,
α0 = min(αmax,max(αmin, 1/‖xk−ΠB(xk−∇f(xk))‖∞)), γ = 10−4, σ1 = 0.1
and σ2 = 0.9.

5.3 Results

Here we summarize the results obtained by the proposed constrained SIRT
(20) and the SPG algorithm 1, for all three levels of perturbation. Table 1
and 2 show the results for both example Iex,1 and Iex,2, for both methods of
choice, whereas the reconstructed images are presented in Fig. 1–4. Although
numbers and pictures speak for themselves several remarks are in order.

The SPG algorithm clearly outperforms the constrained SIRT in terms of
speed (i.e. # iterations). Constraining has different effects onto the number of
iterations. For all considered examples and both methods of choice projection
onto the simplex yield the lowest number of iterations. This becomes evident
especially in the case of Iex,2. In these two cases adding positivity constraints
seem to be relevant and also have a nice denoising effect which is not given
for projection onto Bℓ1,r.

In order to avoid the excessive computation involved in finding an overly
accurate solution we also investigated the question when the support of the
current iteration is (approximately) equal to that of xS . This seem to happen
only for the limit point. However less iterations are sufficient to yield a fairly
reconstruction.

Table 1: Results of SIRT and SPG applied to Iex,1

SIRT SPG
+ ∆ ℓ1 + ∆ ℓ1

ε 0 0 0 0 0 0
#Iter. 1280000 1280000 1280000 107173 75509 74965

‖AT (Axk−b)‖
‖AT b‖

2.82e-02 1.99e-02 2.64e-02 2.68e-03 1.71e-03 2.55e-03

K(xk) 4.43e-04 4.64e-04 4.41e-04 9.92e-06 9.89e-06 9.94e-06
‖xk−xex‖
‖xex‖ 5.78e-01 5.70e-01 5.82e-01 1.21e-01 1.08e-01 1.24e-01

ε 0.05 0.05 0.05 0.05 0.05 0.05
#Iter. 1280000 1280000 1280000 74223 23949 23458

‖AT (Axk−b)‖
‖AT b‖

2.74e-02 6.82e-01 6.82e-01 2.15e-02 6.82e-01 6.82e-01

K(xk) 3.00e-04 3.33e-04 3.33e-04 9.73e-06 9.36e-06 9.95e-06
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Table 1: Results of SIRT and SPG applied to xex,1 (contin-
ued)

SIRT SPG
+ ∆ ℓ1 + ∆ ℓ1

‖xk−xex‖
‖xex‖ 6.66e-01 5.46e-01 5.46e-0 5.24e-01 1.99e-01 2.00e-01

ε 0.10 0.10 0.10 0.10 0.10 0.10
#Iter. 1280000 1280000 1280000 35935 16985 17291

‖AT (Axk−b)‖
‖AT b‖

4.25e-02 1.32e+00 1.32e+00 3.91e-02 1.32e+00 1.32e+00

K(xk) 2.74e-04 4.22e-04 4.22e-04 9.97e-06 9.95e-06 9.99e-06
‖xk−xex‖
‖xex‖ 7.53e-01 5.69e-01 5.69e-01 7.18e-01 3.90e-01 3.90e-01

Table 2: Results of SIRT and SPG applied to Iex,2

SIRT SPG
+ ∆ ℓ1 + ∆ ℓ1

ε 0 0 0 0 0 0
#Iter. 950000 950000 950000 5246 3512 18686

‖AT (Axk−b)‖
‖AT b‖

1.54e-01 1.26e-01 1.59e-04 1.54e-01 1.26e-01 7.01e-05

K(xk) 4.44e-04 2.00e-04 2.60e-05 9.66e-06 5.79e-06 1.00e-05
‖xk−xex‖
‖xex‖ 1.61e-01 4.75e+00 7.33e-01 6.93e-02 4.74e-02 7.37e-01

ε 0.05 0.05 0.05 0.05 0.05 0.05
#Iter. 950000 950000 950000 11798 9559 37348

‖AT (Axk−b)‖
‖AT b‖

8.38e-02 6.62e-01 8.17e-05 8.11e-02 6.62e-01 1.46e-05

K(xk) 2.16e-04 3.63e-04 9.81e-05 8.90e-06 9.98e-06 9.96e-06
‖xk−xex‖
‖xex‖ 2.99e-01 2.19e-01 9.99e-01 2.39e-02 1.15e-02 9.92e-01

ε 0.10 0.10 0.10 0.10 0.10 0.10
#Iter. 950000 950000 950000 12175 8993 101476

‖AT (Axk−b)‖
‖AT b‖

7.80e-02 1.23e+00 1.54e-04 7.53e-02 1.23e+00 1.67e-05

K(xk) 2.56e-04 1.06e-04 1.90e-04 1.00e-05 9.92e-06 9.99e-06
‖xk−xex‖
‖xex‖ 2.54e-01 4.91e+00 9.99e-01 2.34e-02 7.77e-02 9.81e-01
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(a) Iex,1 (b) ILS
+ , ε = 0 (c) ILS

∆ , ε = 0 (d) ILS
ℓ1

, ε = 0

(e) SIRT2000
∆ , ε = 0 (f) SIRT+, ε = 0 (g) SIRT∆, ε = 0 (h) SIRTℓ1 , ε = 0

(i) SIRT2000
∆ , ε = 0.05 (j) SIRT+, ε = 0.05 (k) SIRT∆, ε = 0.05 (l) SIRTℓ1 , ε = 0.05

(m) SIRT2000
∆ , ε = 0.10 (n) SIRT+, ε = 0.10 (o) SIRT∆, ε = 0.10 (p) SIRTℓ1 , ε = 0.10

Figure 1. Reconstruction results for image Iex,1 (20 particles located randomly at grid po-
sitions): (a): Original image. (b)–(d): The reconstructions corresponding to the solutions
xS of (32) obtained via the QP solver of MOSEK [18] for ε = 0 and the three constraining
sets, R

n
+, ∆n,r and Bℓ1,r respectively, equal Iex,1 exactly. (e)–(p): Reconstruction using con-

strained SIRT algorithm for different perturbation levels. (e),(i),(m): Reconstruction using
constrained SIRT algorithm after only 2000 iterations for ε ∈ {0, 0.05, 0.5} and B = ∆n,r.
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(a) Iex,2 (b) ILS
+ , ε = 0 (c) ILS

∆ , ε = 0 (d) ILS
ℓ1

, ε = 0

(e) SPG200
∆ , ε = 0 (f) SPG+, ε = 0 (g) SPG∆, ε = 0 (h) SPGℓ1 , ε = 0

(i) SPG200
∆ , ε = 0.05 (j) SPG+, ε = 0.05 (k) SPG∆, ε = 0.05 (l) SPGℓ1 , ε = 0.05

(m) SPG200
∆ , ε = 0.10 (n) SPG+, ε = 0.10 (o) SPG∆, ε = 0.10 (p) SPGℓ1 , ε = 0.10

Figure 2. Reconstruction results for image Iex,2 (20 particles located randomly at grid po-
sitions): (a): Original image. (b)–(d): The reconstructions corresponding to the solutions
xS of (32) obtained via the QP solver of MOSEK [18] for ε = 0 and the three constraining
sets, R

n
+, ∆n,r and Bℓ1,r respectively, equal Iex,2 exactly. (e)–(p): Reconstruction using the

SPG algorithm for different perturbation levels. (e),(i),(m): Reconstruction after only 200
iterations of the SPG algorithm for ε ∈ {0, 0.05, 0.5} and B = ∆n,r.
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(a) Iex,2 (b) ILS
+ , ε = 0 (c) ILS

∆ , ε = 0 (d) ILS
ℓ1

, ε = 0

(e) SIRT1000
∆ , ε = 0 (f) SIRT+, ε = 0 (g) SIRT∆, ε = 0 (h) SIRTℓ1 , ε = 0

(i) SIRT1000
∆ , ε = 0.05 (j) SIRT+, ε = 0.05 (k) SIRT∆, ε = 0.05 (l) SIRTℓ1 , ε = 0.05

(m) SIRT1000
∆ , ε = 0.10 (n) SIRT+, ε = 0.10 (o) SIRT∆, ε = 0.10 (p) SIRTℓ1 , ε = 0.10

Figure 3. Reconstruction results for image Iex,2 (10 particles located randomly in Ω): (a):
Original image. (b)–(d): The reconstructions corresponding to the solutions xS of (32)
obtained via the QP solver of MOSEK [18] for ε = 0 and the three constraining sets, R

n
+,

∆n,r and Bℓ1,r respectively. (e)–(p): Reconstruction using the constrained SIRT for different
perturbation levels. (e),(i),(m): Reconstruction after only 1000 iterations of the constrained

SIRT for ε ∈ {0, 0.05, 0.5} and B = ∆n,r.
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(a) Iex,2 (b) ILS
+ , ε = 0 (c) ILS

∆ , ε = 0 (d) ILS
ℓ1

, ε = 0

(e) SPG100
∆ , ε = 0 (f) SPG+, ε = 0 (g) SPG∆, ε = 0 (h) SPGℓ1 , ε = 0

(i) SPG100
∆ , ε = 0.05 (j) SPG+, ε = 0.05 (k) SPG∆, ε = 0.05 (l) SPGℓ1 , ε = 0.05

(m) SPG100
∆ , ε = 0.10 (n) SPG+, ε = 0.10 (o) SPG∆, ε = 0.10 (p) SPGℓ1 , ε = 0.10

Figure 4. Reconstruction results for image Iex,2 (10 particles located randomly in Ω): (a):
Original image. (b)–(d): The reconstructions corresponding to the solutions xS of (32)
obtained via the QP solver of MOSEK [18] for ε = 0 and the three constraining sets,
R

n
+, ∆n,r and Bℓ1,r respectively. (e)–(p): Reconstruction using the SPG algorithm for

different perturbation levels. (e),(i),(m): Reconstruction after only 100 iterations of the
SPG algorithm for ε ∈ {0, 0.05, 0.5} and B = ∆n,r.
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6 Conclusion and Further Work

We presented a constrained version of the classical SIRT along with a corre-
sponding convergence analysis for iteratively computing a least-squares solu-
tion subject to sparsity constraints. This setting is especially useful when the
system matrix is huge and not explicitly available and a solution with high
degrees of sparsity is desirable. When the original solution is sparse enough
one may use a least-squares fit subject to an ℓ1-norm constraint on the coeffi-
cients. This results in a tractable problem, even though the problem of finding
sparse (least-squares) solutions has been cataloged as belonging to a class of
combinatorial optimization problems. Successive orthogonal projections onto
the (convex) ℓ1 constraints lend themselves to constraining strategies for the
SIRT iterations. Intriguingly, also simple projections of the SIRT iterates onto
the positive orthant promote sparsity when the original solution is known to
be sparse and positive. A combination of both (thus simplex projections) seem
to outperform both in term of quality of the reconstruction.

Moreover, it turns out that constrained SIRT is just a classical gradient
projected method. This ensures linear convergence. In practice convergence
is very slow. In order to speed up the constrained SIRT we propose choos-
ing larger stepsizes based on the Barzilai-Borwein [2] approach. From the
performance viewpoint, this spectral steplength, coupled with a nonmonotone
linesearch strategy that accepts the corresponding iterate as frequently as pos-
sible, is as a successful idea to accelerate the convergence rate. Its efficiency
is then shown on several test problems simulating a challenging real-world ap-
plication, where it clearly outperforms constrained SIRT. This confirms the
received opinion that the spectral steplength is an essential feature for accel-
erating gradient projection schemes.
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